
Continuous Distributed Tracking of
Large CPS and IoT Sensor Networks : A
Top-k Related Problem

Master’s thesis in Computer science and engineering

Colin Owusu Adomako
Silav Ahmed

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2024

Master’s thesis 2024

Continuous Distributed Tracking of
Large CPS and IoT Sensor Networks : A Top-k

Related Problem

Colin Owusu Adomako
Silav Ahmed

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2024

Continuous Distributed Tracking of Large CPS And IoT Sensor Networks : A Top-k
Related Problem

Colin Owusu Adomako
Silav Ahmed

© Silav Ahmed, Colin Owusu Adomako, 2024.

Supervisor: Romaric Duvignau, Department of Computer Science and Engineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2024
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2024

iv

Continuous Distributed Tracking of Large CPS And IoT Sensor Networks : A Top-k
Related Problem

Colin Owusu Adomako
Silav Ahmed
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Continuous distributed tracking models can serve as a vital building block for
constructing large-scale continuous data and event tracking applications, such as
load-balancing, fleet management, IP traffic monitoring (DDoS attacks), network
anomaly detection (Internet worms), sensor tracking and control, and grid resource
tracking. Due to the widespread use of this model in emerging technologies or ap-
plications, it has attracted significant attention in recent times. At the core of these
applications is a distributed tracking system that aggregates information and per-
forms continuous tracking of values over collections of physically-distributed and
rapidly-updating data streams.
A continuous distributed tracking of IoT sensors, implies deploying a number of
sensors remotely to continuously read values in time steps or rounds. Values read
by these remote sensors (eg. temperature, speed, distance, etc.) are sent to a
designated coordinator node to determine the maximum or minimum value(s) at a
time step (not within a sliding window) using a specific function. The maximum or
minimum value(s) are known as the top-k values in the field of distributed tracking.

We consider the maximum top-k value in this thesis. We also take different ap-
proaches to determine the top-k values by implementing and simulating various
existing top-k algorithms (naive-polling, basic-exact, simple-ε-approximation, adap-
tive filters-δ precision and online top-k position) on real datasets to determine their
efficiency in terms of communication, time complexities and the accuracy with which
they determine the top-k value(s). Strengths of each of the algorithms are selected
and used in the implementation of our own adaptation algorithm.
We have thoroughly explored the trade-off between communication complexity and
accuracy of top-k algorithms on 4 large datasets of sensor data. Based on our exper-
imentation, we have identified the precise cost in communication for increasing the
accuracy of the monitoring. Our results are particularly useful to the practitioners
willing to pick a top-k tracking method over a distributed set of sensors or CPS.

Keywords: top-k, tracking, distributed, continuous, monitoring, algorithm, commu-
nication, coordinator, read, receive.

v

Acknowledgements
We say a big thank you to the Creator for bringing us this far. Much appreciation
and thanks goes to Romaric and Marina, our supervisor and examiner respectively
for their immense contribution through constructive feed backs and directions. We
also thank all our lecturers and lab partners whose work ethics and dedication have
helped shaped us.
Lastly, we will like to thank all our family members and friends for their support
and prayers.

Colin Owusu Adomako and Silav Ahmed, Gothenburg, July 2024

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 2
1.2 System Model . 3
1.3 Goals And Challenges . 4
1.4 Structure Of The Report . 5

2 Background 7
2.1 Problem Description . 7
2.2 Distributed Monitoring Models . 8

2.2.1 Simple Approaches . 9
2.2.2 Distributed Monitoring Approaches 9
2.2.3 Distributed Data Streams Model 12
2.2.4 Distributed Online Tracking Model 14
2.2.5 General Heuristics And Other Dedicated Approaches 15

2.3 Exact and Top-k Tracking . 16
2.4 Approximation Top-k Tracking . 17
2.5 Top-k Tracking Applications . 18
2.6 Literature Review Of Top-k Algorithms 18

3 Algorithms 21
3.1 Naive-Polling Algorithm . 22
3.2 Basic-Exact Algorithm . 23
3.3 Simple ε-Approximation Algorithm 24
3.4 Adaptive Filter-δ Precision Algorithm 26
3.5 Online Top-k Position . 29
3.6 Simple Online Top-k Position . 31

4 Evaluation Methodology 35
4.1 Data Set . 35
4.2 Implementation Design Choices . 38
4.3 Evaluation Metrics . 39
4.4 Simulation Setup And Experiments 39

ix

Contents

5 Results 43
5.1 CPU Usage Experiment . 43

5.1.1 A Tour Of All Tested Algorithms 43
5.1.1.1 Number Of Communication 43
5.1.1.2 Top-k Accuracy Rate / Correctness 49
5.1.1.3 Computation Time 50

5.2 Packet Processing Rates Experiment 51
5.2.1 Comparison Of All Tested Algorithms 51

5.2.1.1 Number Of Communication 51
5.2.1.2 Top-k Accuracy Rate 53

5.2.2 Computation Time . 54
5.3 Speed Measurement Experiment . 56

5.3.1 Analysis Of Results . 56
5.3.1.1 Number Of Communication 56
5.3.1.2 Top-k Accuracy Rate 57

5.4 Temperature Values Experiment . 59
5.4.1 Number Of Communication 59
5.4.2 Top-k Accuracy Rate . 61

5.5 Discussion . 63

6 Conclusion 67

Bibliography 69

A Appendix 1 I

x

List of Figures

1.1 Single-Level Hierarchical Architecture. 4

2.1 Tracking Of The Highest Value, An Example Of Top-k Tracking. . . . 8
2.2 System Architecture Of A Distributed Monitoring Model 10
2.3 A Multi-Level Hierarchical Architecture Of A One-Time Distributed

Model . 11
2.4 System Architecture For CDM Models. 12
2.5 System Architecture Of A Distributed Data Streams Model 13
2.6 System Architecture Of A Distributed Online Tracking Model 14
2.7 System Architecture Of An Exact Top-k Tracking 16
2.8 System Architecture Of An Approximation Algorithm 17

4.1 Values Read By Sample Sensors . 36
4.2 Values Read By Sample Sensors . 36
4.3 Values Read By Sample Sensors . 37
4.4 Accumulated Number Of Communication Per Time 38

5.1 Naive-Polling Algorithm . 44
5.2 Basic-Exact Algorithm . 44
5.3 Simple 1.5%-Approximation Algorithm 45
5.4 Adaptive Filters-.05 Precision Algorithm 46
5.5 Online Position Top-k Algorithm . 46
5.6 Simple Online Position Top-k Algorithm 47
5.7 Comparison Of All Algorithms . 47
5.8 Effects Of Error Bound On Communication 48
5.9 Distribution Of Communication . 49
5.10 Top-k Value Computed Per Time Step 50
5.11 Top-k Values Vs Sensor Accuracy Rate 50
5.12 Average Number Of Communication Per Time 51
5.13 Average Communication Per Time Step 53
5.14 Distribution Of Communication . 53
5.15 Deviations Of Top-k Values Per Time 54
5.16 Top-k Computation Accuracy Rate 55
5.17 Average Number Of Communication Per Time 56
5.18 Distribution Of Communication Per Algorithm 57
5.19 Top-k Computation Accuracy Rate 58
5.20 Deviation From Top-k Values Per Time 58

xi

List of Figures

5.21 Average Number Of Communication Per Time 59
5.22 Communication Per Round . 60
5.23 K Computation Accuracy Rate . 61
5.24 K Deviation From Top-k Values Per Time 62
5.25 Experiment 1 . 63
5.26 Experiment 2 . 63
5.27 Experiment 3 . 64
5.28 Experiment 4 . 64
5.29 Average Number Of Communication Per Experiment 65
5.30 Average Computation Time Per Round (ms) 66

xii

List of Tables

4.1 Snippet Of CPU Load Dataset . 35
4.2 Snippet Of Packet Processing Rate Dataset 36
4.3 Snippet Of Temperature Dataset . 37
4.4 Snippet Of Temperature Dataset . 38

5.1 Total Accumulated Communication 48
5.2 K Computation Accuracy Rate . 49
5.3 K Computation Time . 51
5.4 Total Accumulated Communication 52
5.5 Top-k Accuracy Rate . 54
5.6 Processing/ Computation Time . 55
5.7 Total Accumulated Communication 57
5.8 Total Accumulated Communication 58
5.9 Total Accumulated Communication 60
5.10 K Computation Accuracy Rate . 61
5.11 K Computation Time Per Round (ms) 65

xiii

List of Tables

xiv

1
Introduction

Recent years have seen a clear growth in the number of Internet of Things (IoT)
devices [16] and cyber physical systems (CPS). IoT devices are being used as smart,
reliable, and low-cost technologies that may be used for measurement tasks [14] to
support most functionalities in CPS. Thus, most CPS and adopted IoT devices in
recent times embed sensors used for different sensing categories, such as for safety,
diagnostic, traffic, assistance, environment, IP traffic monitoring, to mention but a
few. For example, the safety sensors are used for sensing and observing accident
hazards and unusual traffic events whilst diagnostic sensors help monitor human
health almost in real-time [22].

In order to achieve accuracy in these measurements or actuation for effective perfor-
mance analysis, optimisation, and anomaly detection, there is a need to track the
measurements by the sensors or nodes which are characterised by a high decentral-
isation level. In some circumstances, the sensor(s) with the highest measurements
may be of interest whilst in other circumstances the one(s) with the lowest may
be of interest and thus need to be tracked. In such settings, sensors within these
decentralised architectures communicate their measurements through networks to
a designated coordinator for the highest or lowest measurements to be determined.
This has been applied to achieve load balancing and can also be used to address
network related security threats such as DDoS, WiFi hijacking, eavesdropping, etc.
It must be emphasised that, although it is too costly to centralise all these mea-
surements and computations, it is quite challenging to also design solutions which
provide an exact or good approximation to the current measurement, while optimis-
ing the communication cost of the decentralised nodes. [12].

Notwithstanding the challenges and difficulties, various research such as [12, 24,
10] has attempted to tackle this particular problem which has been identified as
top-k in the field of continuous distributed tracking. This corresponds to tracking
every node or sensor receiving data continuously from an input or data stream
that is only recognised by the respective node. On the other hand, they could be
observing a specific function whose value is changing over time [24]. To the best
of our knowledge, although several adaptations of these top-k tracking algorithms
have been presented by these different research, there is no research work that
seeks to evaluate these algorithms against each other in terms of communication
and time complexities. A trade off exist between communication performance and
accuracy in top-k computation. Thus, designing efficient top-k algorithms that aim
at minimising the communication (overhead cost), i.e., the number of messages,
between the designated coordinator and the distributed sensors whilst present exact

1

1. Introduction

answers or values can be very challenging.
This thesis therefore seeks to implement different top-k algorithms and if possible
design our own adaptations and modifications as well as potentially new algorithms
that will account for communication needed to track a large network of CPS and
IoT sensors (nodes) based on the shortfalls from the existing ones.
We thus make the following contributions.

1. We provide a comprehensive survey on several top-k models and approaches.
2. We compare existing top-k algorithms from different research communities

through extensive experiments with a variety of real datasets obtained from
different sources.

3. We report comprehensive findings obtained from the experiments. We provide
new insights into the strengths and weaknesses of existing algorithms that can
guide practitioners to select appropriate algorithms for various scenarios.

4. We implement and evaluate our own adaptation or modification of the top-
k algorithm, taking into consideration the strengths and weaknesses of the
existing ones.

1.1 Context
Emerging CPS technologies such as the development of smart cities, autonomous
vehicles, medical diagnosis equipment, electricity and water distribution systems, etc
require the use of a large network of IoT sensors. These sensors produce numerous
data streams from multiple remote sources and must be transmitted to a central
processing system where tracking takes place [30]. The data arrives at a very fast
pace [23], sometimes as fast as several gigabytes a second, and therefore requires real-
time processing of data stream. Due to this, the stream is modelled as a continuous
or unbounded stream [44] using Continuous Distributed Tracking models such as
top-k tracking. Examples of important data stream applications of frequent item
analysis or top-k tracking analysis include the following:

• Environmental Data App/API : Wireless sensor networks (WSNs) with sta-
tionery sensors are deployed to continuously collect environmental data such
as humidity, temperature, wind speed, rainfall pattern, etc, to better under-
stand environmental changes [5].

• Detection of Network Anomalies: Certain network attacks follow some pat-
terns or exhibit some characteristics. An example is how worms are detected
by the frequent occurrence of substring patterns in traffic flows [21]. Another
example is the detection of distributed denial of service (DDoS) attacks which
have recently been established that identifying destination addresses that have
received a large number of packets over a given time can be used to detect
DDoS attacks [9, 3, 32].

• Network Flow Management: Large portions of bandwidth in a network are
accounted for by few flows. To allocate bandwidth more fairly, knowledge of
these flows is a prerequisite [34].

The central idea of tracking models is to incur minimal communication when there
is nothing important being observed, but at the same time to enable rapid (near-

2

1. Introduction

instantaneous) updates when necessary. Hence, the continual transmission of a
large number of rapid data streams to a central location can be impractical or
expensive [30]. Additionally, it leads to high overhead cost. These can be attributed
to data streaming rates exceeding the capacity of the tracking infrastructure (data
collection points, transmission lines, processing centre, etc) in terms of storage,
communication, and processing resources [10].
Our work will be to analyze and evaluate various top-k tracking algorithms both
existing and new ones. And also, implement an adaptation or modification of the
existing top-k algorithm with the objective of optimising the communication needed
to a large network of IoT sensors. Similar works have been done and our work seeks
to build on the recent one [24].

1.2 System Model
A single-level hierarchical architecture forms the basis of the distributed system
environment[10] defined in this paper. It consists of a designated or central coordi-
nator and n nodes or IoT sensors with n distributed data streams. These sensors
S1, S2, Sn are tasked to read data streams and are referred to as monitoring nodes.
The responsibility of the coordinator is to continuously keep track of the monitoring
node with the lowest or highest top-k value over the union of n distributed data
streams. A notable feature of our model as depicted in Figure 1.1, is that there
is no direct communication amongst the monitoring sensors or nodes though they
can communicate with each other through the coordinator. Hence, communication
is conducted between the monitoring nodes and the coordinator. The monitoring
nodes communicate to the coordinator by sending the highest value read over a
time period tp. The coordinator, on the other hand, communicates to the monitor-
ing nodes by sending the current top-k value after comparing the values received
from them.
The distributed monitoring sensors S1, S2, ..., Sn are used to continuously read the
corresponding data streamsm1,m2, ...,mn. These data streams consist of a sequence
of values ordered according to time of occurrence such that v1

1 is the value read in
time step 1, v2

1 in time step 2 and v3
1 in period 3 by Sensor S1. These values are

generally presented in a series of tuples and each tuple takes the form <vi, ti>, where
vi is the value being read by Sensor i, and ti represents the timestamp of the tuple.
On the other hand, in some datasets, ti represents the round number of the tuple. It
must be emphasised that, the value may be repeated any number of times in a data
stream. An example of a data stream, corresponding to the monitoring node S1, may
be represented as m1 = {<2, 0.024>,<2, 0.029>,<1, 0.050>,<0, 0.056>} where m1
= {0, 1, 2, 3}. If a sensor does not read a new value at time ti, the coordinator
will use the previously communicated value at time ti−1. Also, if it reads several
values within a single time period, an average of the values be taken. An average is
taken into account because sensors are susceptible to read outliers and an average
gives a fair representation. For example, if a time period tp = 1 second and values
2.2, 2.7, 2.5 are read within a second, then an average of these values which is 2.5
will be sent to the coordinator.

3

1. Introduction

Figure 1.1: Single-Level Hierarchical Architecture.

As stated earlier, the coordinator in some cases communicate with the monitoring
sensors by sending the top-k value(s) at a time step (by way of the broadcast if
they are on the same network) whilst the distributed sensors communicate to the
coordinator by sending the values read at a time step or round as demonstrated in
Figure 1.1. It is also seen in this figure that, in some time steps there is a single
reading by the sensor. In such a situation, the single value is taken into account. In
certain time steps, several values are read by a sensor and an average of these values
will be computed in this instance. Furthermore, if no value is read as it is in time
period t2 by sensor S2, the previous value read in t1 will be taken into account. In
the figure, the top-k value in each time step is inscribed in red.

1.3 Goals And Challenges
This thesis consists of three parts, the first part aims to implement existing top-k
algorithms currently being used to track a large network of IoT sensors. The sec-
ond part will consist of implementing and designing a modification of a continuous
distributed tracking (top-k) algorithm that will help reduce or optimise communi-
cation needed to track a large network of IoT sensors. Finally, we will design a set
of experiments and compare all implemented algorithms to the existing in terms of
performance, that is communication, top-k computation accuracy (correctness) and
time complexity.
Below is the summary of what this research work seeks to achieve:

1. Implement different top-k algorithms for tracking a large network of IoT sen-
sors on sample datasets, more precisely, the online algorithm introduced in

4

1. Introduction

[24] and the heuristic generic algorithm of [10].
2. Implement our own adaptations, modifications, etc, of top-k algorithms based

on the ideas from the existing ones and evaluate them on the same datasets.
3. Design a set of experiments and compare our algorithm to the existing ones in

terms of performance (communication, top-k computation and time complex-
ity).

The only challenge encountered in this work was the difficulty in coming up with
the right design choices which will enable all our implementations accept the four
dataset files without modifications.

1.4 Structure Of The Report
This report is organised into six main chapters: Chapter 1 is the introduction which
presents a general overview of the entire thesis. This includes the goal, context,
system model, and related works of this thesis.
In Chapter 2, we present the background where we perform a literature investigation
in continuous distributed tracking systems. We elaborate on the state of the art
models in CDT and state of the art top-k algorithms.
The algorithms under investigation in this report are presented in Chapter 3. In
this section, we describe some primary top-k algorithms and also implement our
adaptation algorithm.
The evaluation methodology forms Chapter 4 of this thesis. Over here we present
experiments, datasets, implementation choices and how the efficiency of the existing
algorithms will be evaluated in terms of performance (ie. communication and time
complexities).
Results from the experiments are analysed and discussed in chapter 5. The chapter
is subdivided into four with each presenting the results of a different experiment.
The final section, that is, Chapter 6, also draws a curtain to this research work by
providing a conclusion for the entire thesis. In this chapter, we also outline future
research directions.

5

1. Introduction

6

2
Background

The purpose of this section is to familiarise the reader with the concept of continuous
distributed tracking systems. It commences with a problem description, followed by
a presentation of different models that can be used when developing such systems.
We conclude this section by also presenting a literature review in this subject area.

2.1 Problem Description
In a distributed system, a set of sensors communicate directly to a coordinator C
whose function is to continuously keep track of the sensors or locations where the
highest k values are read or observed. This can incur a lot of overhead costs (perfor-
mance) if the values change rapidly over time due to the frequent communication by
the sensors to the coordinator about all the changes read somewhere in the system
[10]. However, the most existing state of the art top-k tracking algorithm usually
relies on the fact that values read at the different streams are expected to slowly
change, stay the same or similar enough over time to reduce the needed communica-
tion in practice. Rapid data updates, with unique values, thus, requires an improved
top-k tracking algorithm to efficiently track the values read by the distributed sen-
sors whilst optimising the communication between these sensors and the coordinator
C. [18].

We assume a set of n remotely distributed IoT sensors, identified more precisely with
unique identifiers {S1, S2, S3..., Sn} which continuously read data stream {v1, v2, . . . , vn}
at time t1, t2, t3. Data is read or observed exclusively and in a synchronised fashion
by the respective sensors. It must be noted that, at time t1, a sensor Si receives vt1i
and does not know in advance the value of any vt2i , where t2 > t1, in other words, t1
precedes t2. The sensors can communicate to a single coordinator which keeps track
of the sensor with the highest k value(s) but cannot communicate directly with each
other except through the coordinator as depicted in Figure 1.1.

A practical example is a set of n IoT sensors, where n = 17, deployed remotely into
the sea to track the highest velocity or temperature value and a single node as a
coordinator to track the values being read by all the remote sensors at each time
unit t (eg. where t = 1 second). And these sensors communicate their reading to
C which is referred to as the coordinator which also keeps track of the node with
the highest temperature value at each time unit. To decrease network cost and
increase the sensor’s battery life, the central idea of the tracking models used in
such systems is to incur minimal communication when there is nothing important

7

2. Background

being read or observed, but at the same time to enable rapid (near-instantaneous)
updates when necessary. Indeed, the continual transmission of a large number of
rapid data streams to a single coordinator can be impractical or expensive [30].

Figure 2.1: Tracking Of The Highest Value, An Example Of Top-k Tracking.

In Figure 2.1 above, there are n remotely distributed sensors communicating to a
single coordinator about temperature values being read. The task of the coordinator
is to keep track of the sensor with the highest k value at each time step t using a
tracking function. The highest k value at each time step is highlighted in red. For
example, it can be seen that sensor Sn holds the highest k value at time step t1
whilst sensor S3 holds it for time unit t2 and so on. It must also be emphasised
that, sensor S2 read nothing at t2 and therefore its reading for t1 is used in the k
computation at t2
The top-k problem has many applications in most emerging technologies such as
cloud computing, smart cities, autonomous vehicles, medical diagnosis equipment,
electricity or water distribution infrastructure, IP networks, and other cyber physical
systems which require the use of a large network of IoT sensors to observe data
values. As stated earlier, these sensors read unbounded data streams at a rapid
rate from multiple remote sources. The data must be transmitted to a central
processing system C where tracking takes place. This leads to high communication
complexities.

2.2 Distributed Monitoring Models
Various approaches or models have been deployed over the years in the field of
distributed monitoring. In this section, we will outline state-of-the-art approaches

8

2. Background

being used for this purpose.

2.2.1 Simple Approaches
The simplest state-of-art approach for continuous distributed monitoring is for each
node to communicate all its observations to the coordinator. The shortfall of this
approach is that it is not scalable with a large number of nodes and observations. To
address the issue of scalability and to specify the optimisation’s properties, polling
and sampling approaches were introduced [12].

Polling relates to retrieving data at a constant rate from observers, and collecting
this information together. However, since this approach waits for the latest poll
to get a snapshot about the current situation, it loses some of the characteristic
features of a continuous tracking model. A drawback with this approach is that it is
not possible to predict how polling can work, when the goal is to measure some non
linear functions for all distributed nodes or when trying to discover if some complex
events have happened. Another drawback is that the tracking procedure is based on
the frequency of polling. When an event takes place, a careful balance is required
in setting the frequency of the polling event. When it sets a very narrow gap the
network becomes overloaded. But setting a larger gap, the delay between occurring
and detecting a significant event by the protocol may become too large as shown in
Figure 2.2 [12], thus, may lead to a reduction in the accuracy [12].

On the other hand, sampling relates to retrieving data at a constant rate from
observers or nodes whilst fetching data from a few nodes to reduce the number of
measurements on the system. It must emphasised that with sampling, you can easily
miss the top-k nodes, for instance, if you want the top-1% of the nodes. Therefore,
polling and sampling inherently possess a number of drawbacks and considerable
research has been invested in recent years to circumvent those drawbacks with more
elaborate forms of monitoring, which are described hereafter.

2.2.2 Distributed Monitoring Approaches
The focus of these approaches is not on solving a function on every time step but to
compute a function of all values read over a sliding window. They were developed
to alleviate the drawbacks of the simple approaches. Two essential characteristic
features make these approaches more efficient than the simple approach. Firstly,
processing of data stream in done locally by each distributed monitoring nodes.
Secondly, communication is not done each time step, but only when a set criteria is
met or when results are requested. Additionally, whenever there is communication,
only the processed data by the monitoring nodes are transmitted. This helps reduce
the amount of communication needed and thus decrease processing time by use of
the distributed nodes.

These distributed approaches can be categorised into two, namely one-time dis-
tributed approaches and continuous distributed approaches.

9

2. Background

Figure 2.2: System Architecture Of A Distributed Monitoring Model

One-Time Distributed Monitoring Model
One-Time Distributed Monitoring Model (OTDM) is quite similar to polling but is
made up of those methods that use one-time query approaches which only deliver
results once a milestone is reached or at a point in time [10]. Although these methods
are not designed to be continuous in their approach of tracking events, they can be
repeated with short time intervals to simulate results [10]. Manjhi et al. [3] sought
to tackle this problem of determining time-sensitive (recent) frequent items over a
distributed data sources by installing an ε-approximate counting technique at each
monitoring node and later transmitting local frequency counts over T time units to
a centralised node. The received local counts are then joined with the previously
received counts. By deprecating the previously received counts, more emphasis is
placed on recent items occurrences in an exponentially decaying fashion.

Manjhi et al. [3] have shown that transmitting all frequency counts to a designated
centralised node would yield an excessive communication cost. Also, a large number
of monitoring nodes means the centralised node will be flooded with the amount of
data received. A multi-level hierarchical communication architecture was proposed
as a means of reducing the load on the centralised node. This is quite similar to the
single hierarchical architecture that is going to be used in our work, except for the
introduction of an additional node between the monitoring nodes and the designated
centralised node [13]. This is described in Figure 2.3.

The introduction of the additional or intermediate nodes paved a way for the au-
thors to find a point where frequency counts received from their child or monitoring
nodes were cumulatively combined. This further introduced the concept of a pre-

10

2. Background

Figure 2.3: A Multi-Level Hierarchical Architecture Of A One-Time Distributed
Model

cision gradient to reduce communication load on a single link. With this in place,
the ε-approximate counting techniques installed on each leaf node counts the true
frequency of an item. Communication is further reduced by dropping all zero val-
ues to avoid transmission to the centralised node. In addition, the degree of error
tolerance was varied at each level of the node.

Continuous Distributed Monitoring Model
Continuous Distributed Monitoring (CDM) is a continuous monitoring in which an
aggregate function is computed repeatedly over time and the results provide a view
of the changes in the behaviour of a system for a certain time-frame. The key idea
of this model, is to afford minimum and efficient communication between the nodes
and the coordinator [19] when there is nothing important being read. It again seeks
to empower rapid essential upgrades at the same time and also to take a particular
decision based on the founded updates [12][18]. Each node acts as an observer in the
system and transmits data about locally detected events (eg. pressure, temperature,
humidity, etc) to a coordinator through a bidirectional channel. The coordinator
then adds and computes the results using a monitoring function. Thus, in this
model, there are n, remote nodes denoted as S1, S2, ...Sn and a single coordinator
also represented by C. Also, A = (a1, a2, ...am) denotes a sequence of items where
ai ⊂ [n] was received by one node at time ti where t1 < t2 < < tm. Hence,
the monitoring function here is defined as f : [N]m → R with A(t) representing the
multi-set of data received from all nodes up until time t. It must be emphasised
that, the goal of a monitoring algorithm that is expressed based on this model is

11

2. Background

to approximate the value of A at time t f(A(t)) with a relative error of ε where 0
< ε < 1, this is called the approximation model represented in [11] where it stores
and remember the latest item the node shared with the coordinator and compare it
with the new value observed, it transfers to the coordinator in case it lies ε far from
the value of A [16].

Figure 2.4: System Architecture For CDM Models.

The most prevalent problem in this model is counting the number of events occur-
ring during some sliding window. Another common problem of these monitoring
systems is calculating the frequency of items [13] and very popular items [41]. Some
assumptions well noting in this model are that, a connection is only allowed to be
initiated by a remote node upon arrival of data. Also, nodes do not communicate
with one another about local results.

2.2.3 Distributed Data Streams Model
With Distributed Data Streams (DDS), monitoring distributed systems require very
high communication overhead [33]. The DDS model finds ways to reduce the com-
munication between the nodes and the coordinator [11]. It is a variant or an adaption
of the Continuous Distributed Monitoring (CDM) model. The difference lies in the
communication architecture, that is, whereas communication between nodes in this
model is unidirectional as depicted in Figure 2.5, it is bidirectional in CDM. In other
words, the coordinator in this model does not communicate or share the global state
with the remote nodes, hence the nodes perform their local aggregation and compu-
tations based precedence to decide when to communicate to the coordinator about
their local observations [20] Another notable difference is that, unlike the contin-
uous monitoring model, distributed observers in the data streaming model do not
compute a function of all their inputs aggregated together, but instead keep a sub-

12

2. Background

linear amount of information to approximate the result of a monitoring function.
On the other hand, a continuous distributed monitoring model does not require each
observer to use sub-linear space; it treats space as a property of an algorithm used
instead.

Figure 2.5: System Architecture Of A Distributed Data Streams Model

In this model, the data stream of each node is considered to be a sequence of items
or values from an ordered U that defines the set of possible distinct items of the data
stream can contain. All items in set U haves their corresponding arrival time-stamp
based on a local clock. A data stream is represented by σ and we have S1, S2, ..., Sn
remote nodes (or observers). There is also a single designated coordinator S. For
a given node Si, its corresponding data stream is denoted by σi. Therefore, for a
given stream σ, let cj, σ and cσ represent the count of item j ∈ U and all items such
that cj = Σσcj,σ and c = Σσ represents the count of j and all items in all streams
put together. It must be noted that specific and entire approximation counts for
items are needed for various statistical computations.
Algorithms based on this model either applies to the whole stream or recent window
of size w during statistical computations. The Count-based and time-based sliding
window includes w items in each stream and items received in the last w time units
respectively. This model differs from the continuous distributed tracking model in
that, more than one item can be associated with a specific time t in the time-based
sliding window. It must be emphasised that existing algorithms need to be adapted
to suit sliding-window algorithms for the whole-stream case with respect to the
space complexity as a result of the sliding-windows converting monotonic functions
to non-monotonic functions because of "deletions". For instance, if we are interested
in counting the frequency of a specific item in the case of the sliding window case, this
is achieved by keeping a single counter. This is due to the fact that, any algorithm
implemented based on this model, the space complexity and error guarantee bound

13

2. Background

is of great importance since observers and the coordinator are assumed to not be
able to hold all the received items in memory. Therefore, each site can only use sub-
linear amount of space and maintains its statistics approximately. Hence, this will
require a space of Θ(1/εlog2(εw))bit for the sliding-window if ε of relative error is
allowed [29].

2.2.4 Distributed Online Tracking Model
DOT is a system characterised by a general-tree structure. It is a recently intro-
duced unidirectional [40] and synchronous model that features the possibility to
have intermediary nodes between the coordinator and the remote nodes. This in-
termediary nodes function as relay nodes and are tasked with aggregating statistics
locally before forwarding some data to the coordinator. The remote nodes lie at the
leaves and the coordinator is always located at the root of the tree. The relay nodes
do not observe a function that participates in the calculation directly, but it can
receive messages from remote nodes and forwards them to the coordinator [37]. In
the setting of [37], the cost of the communication is represented by the total amount
of messages sent in a topology.

Figure 2.6: System Architecture Of A Distributed Online Tracking Model

The figure above provides a schematic view system being described. Si represents
the remote sites or node whilst the relay nodes are shown in coloured circles. It

14

2. Background

must be emphasised that, any system with a general-tree is suited for DOT model.
Directly connected remote nodes to the root nodes can also be a valid system in
DOT just as in the DDS model. In such a case, a number of arbitrary relay nodes
and sub-trees can be inserted into the tree as depicted. To better understand this,
let there be n remote nodes denoted as S1, S2, ...Sn and a designated coordinator.
The aim of the coordinator is to compute a function f over t that is, f(t) for all
given values of t. The function f , takes a list of values as input with each value in
the list being a representation of what is being read or observed by the remote node
at time t. It then computes an aggregate result for t. To accurately compute f(t)
requires flooding the network with messages or values to be read by each monitoring
node therefore the aim of the coordinator is to approximate f(t) by computing g(t)
such that g(t) ∈ [f(t)−∆, f(t) + ∆] for any time step t and some user-guaranteed
error threshold ∆.
Hence, if f(t) and fi(t) denote a local function at node Si and its value at time
t respectively, then f at the coordinator node is a function that receives all the
results from the local functions (i.e fi(t)) as input for time t. Therefore, f(t) =
f(f1(t), f2(t), ..., fn(t)) for time t. And based on the choice of a monitoring function,
f and fi can be either one-dimensional or multi-dimensional. For example, let us
consider an aggregate "max" function that determines the highest value read at time t
since initialisation. Hence, for each node, fi(t) is the local highest or maximum value
read at time t, and f(t) is the highest value read in the entire system initialisation
at time t.

2.2.5 General Heuristics And Other Dedicated Approaches
Heuristic approaches to distributed queries have been explored in parallel and an-
alytical works. In these approaches, several adaptations and experiments are run
on an existing model until the desired result or outcome is achieved. A classical
example is the use of adaptive filters introduced in [28] for tracking heavy hitters
for DDoS attacks for effective protective mechanisms to be put in place. With the
adaptive filters, the authors introduced a natural “filter” approach, which assigns a
local filter to each site so that if the current value is within the filter, it does not
need to be reported. When a site’s value falls outside its filter, the current value is
reported, and the filter is re-centered on this value. Over time, some filters can be
widened and others narrowed so that the total uncertainty remains bounded, but
more slack is allocated to values that are less stable. Other heuristic approaches were
as outline in [43] are score-based algorithms and iterative reduce top-k algorithms.
The score-based algorithms assign each item mi with a score and the item with the
highest score is selected as the top-k. These algorithms include:

• Election Algorithms. This approach can be used to compute the score of
an item. There are two well-known election algorithms, that is, BordaCount
[8] and Copland [6].

• Max Algorithms Proposed by Guo et al.[7], it is a graph-based algorithm to
compute the maximal item, which can be used to assign a score for each item.

• Ranking Algorithms. Most of these algorithms in this category focus on
ranking documents or images.

15

2. Background

The iterative reduce top-k algorithms work by iteratively eliminating lowly ranked
items that have small possibilities in the top-k results, leaving only the highest
scored k items. These algorithms also include:

• Iterative. This is an adaptation of the max algorithm by Guo et al.[7] to
improve its quality. It first uses the score-based method to compute the scores
of each item and then removes half of the items with small scores. It then
recomputes the score for the remaining items and repeats the iteration until
the k items are left.

• PathRank. This is used to perform a "reverse" depth-first search (DFS) for
each node, which traverses the graph by visiting the in-neighbours of each
node. When the path with a length larger than k is found, it eliminates the
item as k items have already been better than the item. [17].

A shortfall of these heuristic approaches is that, they do not take into account the
exact function that is being monitored. To determine the top-k items with this
approach is also NP-Hard [7].
Essential modifications to theoretical models have been affirmed in previous at-
tempts to make CDM algorithms feasible in practice as e.g. for sensor networks
[35]. It is well noting that, a large amount of research has been invested in CDM
algorithms and techniques to find and prove (matching) lower and upper bounds
on the communication complexity. Notwithstanding, this research has not yet been
replicated in large scale Cyber Physical Systems and IoT networks. This will thus,
form the basis of our discussion in our thesis.

2.3 Exact and Top-k Tracking

Figure 2.7: System Architecture Of An Exact Top-k Tracking

As the name depicts, exact top-k tracking is related to the designated coordinat-
ing sensor’s ability to continuously present the exact top-k set of values. This is
necessary in applications where correctness in the top-k values is mandatory or a
requirement. That is, an algorithm with ε-approximation with ε = 0, the coordi-
nating sensor must continuously report the exact top-k set [10]. For example, if

16

2. Background

S1, S2, S3, S4, S5 reads 3, 9, 1, 7, 5 respectively at time t, then an exact top-k algo-
rithm must present 9 as the top-1 value at time t.

2.4 Approximation Top-k Tracking

Figure 2.8: System Architecture Of An Approximation Algorithm

As afore-mentioned, since data streams are unbounded in nature, it becomes some-
times impossible to retrieve exact answers to top-k queries. Thus, when exact an-
swers to top-k tracking queries are not mandatory or relevant and a controlled degree
of error is acceptable (i.e. ε > 0), approximate top-k can be applied [10]. This has
thus motivated the creation of numerous top-k tracking algorithms that adopts ap-
proximate top-k solutions at the expense of correctness [4]. It is worth noting that,
these approximate top-k solutions require only a limited amount of memory and
provide an approximation of the top-k values. Hence, to solve the problem of top-k
value within approximate bounds, the ε-deficient or ε-approximation could serve as
a stepping stone to achieve exact top-k as proposed in the work of [1].
The ε-approximate top-k problem allows a degree of error on the frequency counts
which must fall with a range or be bounded by a user defined error of tolerance.
An example is an algorithm by [27] that guarantees approximating tuple ranks to a
factor 0 < ε < 1. The more the value of ε is closer to 0, the more the approximation
algorithm reduces to the exact algorithm. Another example is Threshold Algorithm
(TA) [31] which also has approximate variants. It defines a parameter ε > 1 which
represents the level of approximation, such that a value x /∈ (top − k) satisfies the
condition ε-approximation ≤ x. On the other hand, x ∈ (top−k) if ε-approximation
< x. The downfall of this approach is that the parameter ε varies from application
to application, thus, there is no general scheme for deciding its value [24].
As stated above, choosing the value ε can be very problematic and varies from ap-
plication to application. It must be noted that approximate answers are applicable
when they are associated with some accuracy guarantees [38], hence the low approx-
imation value. This means that, if a value vi at time t2 is within ε range from the
value at t1, it is dropped and not communicated to the coordinator. The choice of

17

2. Background

our ε-approximation value was carefully selected due to the nature of the datasets
used. The datasets is characterised by very small differences between the values
which are almost negligible. Figure 2.8 is an illustration of an approximate top-k
tracking.

2.5 Top-k Tracking Applications
Given a set of n distributed sensors continuously reading values and a designated
coordinator C, the top-k problem seeks to determine the top-k value whenever there
are updates. Due to its widespread usage, top-k algorithms have been widely used
in many real-world applications such as:

• Load-balancing. This relates to CPU usage, that is, a number of CPUs running
similar programs can be tracked to see which ones have the top-k accesses each
time period or overtime. This can help to determine the most accessed CPU
so that some load can be directed from it to the less accessed CPUs [16].

• Fleet Management. In this example, large vehicular networks are tracked to
determine the Board with the top-k usage. This in effect can help balance
On-Board Workload [15].

• Anomaly Detection. An instance of this, is an application tracking sensors to
determine the sensors data using non-parametric models [36].

2.6 Literature Review Of Top-k Algorithms
As aforementioned, the main objective of top-k algorithms is to track the k values
(eg, temperature, distance, etc) at a central node (coordinator) from numerous
remote sites whilst optimising the communication between the coordinator and the
remote sites (ie. IoT sensors in our case). This is depicted in the pioneering work of
[26, 31] which focuses on providing exact top-k answers to one-time top-k queries
where source data is accessed through a restrictive interface. Vlachou et al., [39]
also put forth a SPEERTO approach, which utilises a threshold-based super-peer
selection that presents the exact results progressively to the user based on the skyline
of each super-peer. Mouratidis et al., [25] also tackle the exact top-k problem using
two techniques.
Similar work is put forth by J. Moraney and D. Raz in their paper, On the practical
detection of the top-k flows, to take a different approach to the top-k problem
and study the ability to perform monitoring tasks using efficient built-in counters
available in current network devices. The purpose is to monitor network traffic for
various management and security systems. This paper provided us practical insights
on how top-k tracking algorithms could be used to mitigate a number of network
security challenges, among other things. They describe settings that the number
of active flows in a network node are much larger than the number of available
monitoring resources and where there is no practical way to maintain a per-flow
state at the node. According to them, this situation has led to rising in the recent
interest in streaming algorithms where complex data structures are used to perform
monitoring tasks like identifying the top-k flows using a constant amount of memory.

18

2. Background

Mäcker et al [24], in their paper, Online Top-k-Position Monitoring of distributed
data streams also presents a model with a single coordinator and a set of n dis-
tributed nodes connected to the coordinator. Each of the n nodes continuously
receives data from an input stream that is only known to the respective node. It
also brings to fore that, at any time, the coordinator knows the k nodes currently
observing the k largest values. A node can exchange messages with the coordinator
to be able to inform the coordinator about its current value. Additionally, broadcast
messages can be sent to all the distributed nodes by the coordinator. This paper
form the basis of our thesis work since the model described by Mäcker et al is similar
to the one that will be used in this thesis.
Furthermore, an earlier work by Olston, Jiang and Widom focused on tracking a
function over single values that could vary up and down, such as monitoring their
sum using adaptive filters [2]. Here, some uncertainty can be tolerated, so they
introduce a natural “filter” approach, which assigns a local filter to each site so that
if the current value is within the filter, it does not need to be reported. When a site’s
value falls outside its filter, the current value is reported, and the filter is re-centred
on this value. Over time, some filters can be widened and others narrowed so that
the total uncertainty remains bounded, but more slack is allocated to values that
are less stable.

In their work, continuous skyline maintenance [42], the authors also introduce
a general approach to reduce communication overhead in client-server architectures
when monitoring distributed data streams. The notion of filters is introduced where
a problem called continuous skyline maintenance is considered, in which a coordi-
nator is supposed to continuously maintain the skyline of dynamic objects. They
use a filter method which helps in avoiding the transmission of updates from the
remote sites to the coordinator in case these updates cannot influence the skyline
maintained by the coordinator as a means of minimising the communication over-
head between the coordinator and the observers. Thus, the filter is able to capture
the exact skyline at each timestamp or point in time and usually achieves signifi-
cant savings in terms of network overhead. Though the filter achieved significant
savings over the naive approach of transmitting all updates, in several applications,
snapshot skylines may not be essential since changes occur too fast. This makes
it more interesting to keep track of the records or data that appear consistently
in the skyline over several timestamps. To address this, the authors further intro-
duced the concept of frequent skyline queries over a sliding window (FSQW). In
this concept, a window W s

t constitutes a set of consecutive snapshots ending at t,
thus W s

t = {St + 1− s, ..., St}. According to this concept, a record only constitutes
a 0-frequent skyline point in W s

t if it occurs in at least 0.s snapshot skylines within
the window (0 < 0 <= 0). As the sliding window moves along the time dimension,
FSQW continuously track or reports the frequent skyline points.

The filter is easily adapted for the exact processing of FSQW and despite its ability
to prevent transmission of all updates, there is a possibility of requiring a large
number of message updates. This problem is also alleviated with the use of a
Sampling method. With this method, updates are transmitted at certain instances
depending on the desired choice between accuracy and message overhead. To find a

19

2. Background

balance between Filter and Sampling methods, a Hybrid approach is developed by
integrating these methods (Filter and Sampling). The Hybrid differentiates three
modes for each record, that is filter, sampling, or mixed mode, acronymed as FM,
SM, and MM respectively. It also has a characteristic feature of being balance
under extreme settings, where the performance of Filter and Sampling deteriorates.
This general framework for the Hybrid algorithm for processing FSQW (0,W s

t) is
presented in [42].
Also, in continuation of the work of [42], [24] presents and analyses a new randomised
online algorithm for the online top-k-position monitoring problem which forms
an integral part of our work. It is referred to as online because the values being
read by the nodes change over time and are not known in advance. The algorithm
entails monitoring the nodes currently holding the k largest values by performing
a Bernoulli trials in a setting comprised of a coordinator and n distributed nodes.
They describe a set of filters as a collection of intervals, with each assigned to the
nodes by the designated coordinator through a broadcast channel. The maximum
or minimum protocols are used to reassign filters whenever there is a filter violation.
The basic idea of assigning filters to the distributed nodes is to reduce the number
of exchanged messages by providing nodes constraints defining when they can safely
resign to send observed changes in their input streams to the coordinator. This is
describe in detail in Section 3.5.

20

3
Algorithms

The purpose of this section is to introduce some existing top-k algorithms and to
provide clarifications on their operations. Also, our own adaption of these existing
algorithms will be presented. The knowledge and experience gained through the
evaluation of the existing ones will serve as the building blocks for the implementa-
tion of our adaption. The goal of our adaptation algorithm is to reduce communica-
tion complexity between the coordinating node and the distributed tracking sensor
considerably.

In the implementation of these algorithms, several functions will be repetitive,
namely, read, send, receiveFrom and maxValue. Below is a description on these
functions:

• read(). At each time step t, each sensor observes or reads a value. This
function is used to read these values, being it temperature, direction or speed.
It has no parameters.

• send(vti , C). It is used by the distributed sensors to communicate their reading
to the communicator. At each time step t, each sensor communicates whatever
value is being read using this function. It takes vti as a parameter which is a
representation of the value v, the identity of the sensor, i, time step t, and C,
the address of the coordinator.

• receiveFrom(). This function is used by the coordinator to receive values being
communicated to it from the distributed nodes at each time step.

• maxValue(V{i}). It is a function used by the coordinator to compute the top-k
value(s) at each time step ti. The output of this function is mt

i being the top-k
value. The value i is the identity of the sensor(s) with the top-k value(s) and
t depicts the specific time step.

The table below is a summary of the symbols used in the algorithms and what they
represent.

Symbol Representation
Si identity of a remote sensor
vti value read by sensors Si at a specific time t
V values read by all the sensor at a time
mt
i top-k value with identity of sensor i and time t

` list of all top-k values
p previously communicated value to coordinator

21

3. Algorithms

3.1 Naive-Polling Algorithm

With the naive-polling approach for determining the top-k values, all values read by
each tracking sensor Si are sent to the central coordinator C. That is, with n set
of tracking sensors (S1, S2, ..., Sn), each continuously reading or observing a number
of values vt1, vt2, ...vtn respectively, exactly n number of values will be sent to the
coordinator at each time t. Therefore, the algorithm behaves the same way in the
initialisation stage, t = 1 and the subsequent rounds t > 1. This leads to increased
overhead in communication since large volumes of values will be communicated to
the coordinating node at each time period.

Algorithm 1: Naive-Polling Algorithm
/* algorithm begins at time t = 1 */

1 Input: Each sensor reads value vti
2 Output: top-k value vmt

i is calculated at C
3 ` = {}
4 Function SENSOR(Si, t)
5 for each Sensor i do

/* all remote sensors send all their values at each time step */
6 vti ← read()
7 send(vti, C)
8 end function
9 Function COORDINATOR (t)

/* coordinator receives all sent values from sensors at each time step */
10 V ← receiveFrom()
11 for each received value vti do
12 mt

i ← maxValues{V}
13 `← mt

i

14 end function
15

Also, it must be emphasised that a naive-polling scheme that accurately tracks the
k values by forcing the distributed nodes to ship every remote value update to
the coordinator is clearly impractical, since it does not only impose an inordinate
burden on the underlying communication infrastructure (especially, for high-rate
data streams and large numbers of remote sites), but also drastically limits the
battery life of power-constrained remote devices (such as wireless sensor nodes).
One notable feature of this algorithm is that the coordinator does not keep track
of which monitoring node is communicating which message, hence the name naive-
polling.

Notwithstanding the drawbacks of this algorithm, it has high accuracy in determin-
ing the exact top-k value(s). This is because all the values being read at each time
step are communicated to the coordinator. This enables the coordinator to get the
exact current values to apply its computation function on.

22

3. Algorithms

3.2 Basic-Exact Algorithm
This algorithm is an advancement of the naive-polling algorithm. It sought to
achieve better performance than the naive-polling algorithm with respect to over-
heads that arise from constant communication between the monitoring sensors and
central coordinator.

Algorithm 2: Basic-Exact Algorithm
/* algorithm begins at time t = 0 */

1 Input: Each sensor read value v0
i

2 Output: top-k value mt is calculated as C
3 ` = {}

/* distributed sensors execute this code */
4 Function SENSOR(Si, t)
5 for each Sensor i do
6 vti ← read()

/* at the initialisation stage all values are sent to the coordinator
*/

7 if ti = 0 then
8 send(v0

i)
9 else

/* at time t > 0, a value is only sent to the coordinator if the
current value is different from the previous */

10 if vti 6=vti−1 then
11 send(vti, C)

12 end function
/* coordinator executes the following code */

13 Function COORDINATOR (t)
/* if a new value is received from a sensor at t */

14 if newValue then
15 receiveFrom() ← vti

/* previously received value at t− 1 if there is no value */
16 else
17 receiveFrom() ← vt−1

i

/* coordinator receives all values from remote sensors */
18 V ← receiveFrom()
19 for each received value vti do
20 mt

i ← maxValues{V}
21 `← mt

i

22 end function
23

It must be noted that, the basic-exact algorithm behaves like the naive-polling al-
gorithm in the initialisation stage t = 0. That is, at this stage, all remote sensors
communicate their values to the coordinator for the top-k to be determined as pre-

23

3. Algorithms

sented in the algorithm above. On the other hand, in subsequent rounds, not all
values read by a monitoring sensor Si is sent to the coordinator C except when
the previously read value vt−1

i is different from the current value vti being read (i.e.
vti 6= vti

−1) and that value vti is being observed by sensor Si alone.
There is the tendency that, this algorithm leads to an improved communication
complexity since line11 is only executed when vti = vti

−1. Therefore, if the values
being read by the respective tracking sensors are repetitive it will result in a reduced
communication complexity since the condition at line10 will not be met, thus those
values will be dropped and not communicated to the coordinator.
This algorithm also has a high tendency of determining the exact top-k values and
thus a good fit for applications with large volumes of data where exact k are required.

3.3 Simple ε-Approximation Algorithm
This is also an adaptation of the basic-exact algorithm with the key aim of improving
communication complexity. Over here, some level of the error bound is permissible.
That is, a strong guarantee on approximations based upon a user defined error
parameter ε is allowed. This algorithm is more suitable for applications where exact
top-k values are not of the essence. At time t0, all remote sensors send their values
to the coordinator for the top-k value(s) to be determined just as in algorithm 1.
However, it must be emphasised that, each remote sensors must have a mechanism
to save or remember the value it previously communicated to the coordinator. This
is represented by p in lines 9 and 13 in the algorithm. Below is the follow of the
algorithm that precedes the initialisation round.
In the simple ε -Approximation algorithm above which represents t 6= 1, if the
current value vti being read by a tracking sensor Si is within ε-approximation away
from the previous value, vti−1 will be dropped and not sent to the coordinator.
Preceding values will only be sent to the coordinator if only the value is outside
ε-approximation away from the previous value.

24

3. Algorithms

Algorithm 3: Simple ε-Approximation
/* algorithm begins at time t = 1 */

1 Input: Each sensor reads value v0
i

2 Output: top-k value mt
i is calculated as C

3 ` = {}
/* distributed sensors execute this code */

4 Function SENSOR(Si, t)
5 for each Sensor i do
6 vti ← read()

/* at the initialisation stage all values are sent to the coordinator
*/

7 if ti = 0 then
8 send(v0

i C)
9 pi ← v0

i

10 else
/* at time t > 0 values are only sent to the coordinator if they

fall outside ε */
11 if (pi/vti)/100 = ε-approximation then
12 send(vti)
13 pi ← vti

14 end function
/* coordinator executes the following code */

15 Function COORDINATOR (t)
/* if a new value is received from a sensor at t */

16 if newValue then
17 receiveFrom() ← vti

/* previously received value at t− 1 if there is no value */
18 else
19 receiveFrom() ← vt−1

i

/* coordinator receives all values from remote sensors */
20 V ← receiveFrom()
21 for each received value vti do
22 mt

i ← maxValues{V}
23 `← mt

1

24 end function
25

25

3. Algorithms

3.4 Adaptive Filter-δ Precision Algorithm

Algorithm 4: Adaptive Filter -δ Precision Setting
/* Li = lowerBound */
/* Hi = upperBound */
/* δ = precisionConstraint */
/* Wo = δ */

1 Function filterRESET (vti , δ)
/* shrink filters */

2 if (Wo = shrink) then
3 Li ←vi −Wo/2
4 Hi ←vi +Wo/2

/* expand filters */
5 if (Wo = expand) then
6 Li ←vi −Wo/2
7 Hi ←vi +Wo/2
8 end of function

This seeks to define an answer that is approximately bounded by a pair of real values
L and H that define an interval [L, H] in which the precise answer is guaranteed to
lie. Precision, denoted by δ, is quantified as the width of the range [H L] that is
H - L = Wo with the maximum Wo value being δ. A 0 δ value corresponds to an
exact precision and∞ represents unbounded imprecision. Due to the variation in the
precision or δ, the algorithm in qualified with the selected value, for example adaptive
filters-δ precision The following functions were created to successfully simulate a
functioning adaptive filters algorithm.

• filter. Intercepts update streams from sources and calls the Constraint function
to maintain periodically-shrinking bounds for the objects. Each filter forwards
updates that fall outside its bound to the constraints for re-computation.

• Constraint. Specifies the precision constraint bounds ([L,H]). It periodically
shrinks the bound width for each object. It reallocates width if 5 successive
updates fall outside the precision constraint bounds.

• A tracking sensor. Reads values from the datasets and drop it if it falls outside
the filters and sends to the coordinator if otherwise. If it continuously falls
within the precision constraint for 5 successions, it shrinks the width (Wo).
On the other hand, it expands the width if it falls outside successively for 5
occasions. It must be noted that Wo cannot expand beyond δ, that is, Wo ≤ δ

• Coordinator. Computes the top-k from all values received from the tracking
sensors.

Algorithm 4 is an implementation of the filters for the adaptive filter algorithm

In the initialisation stage, all remote nodes send their readings to the coordinator.
However, unlike the previous algorithms (naive-polling, basic-exact and simple ε-
approximation), the coordinator communicates back the top-k value and a filter to
the remote nodes. This is illustrated in the algorithm below which represents the

26

3. Algorithms

adaptive filter setting algorithm at time t0.

Algorithm 5: Initialisation stage for AdaptiveFilter-δ Precision
/* time t = 0 */

1 Input: Each sensor reads value v0
i

2 Output: top-k i.e m0
i and [L0, H0] value is calculated as C

3 ` = {}
/* distributed sensors execute this code */

4 Function SENSOR(Si, t)
5 for each Sensor i do
6 v0

i ← read()
7 send(v0

i , C)
8 (m0

i , [L0, H0])← receiveFrom(C)
9 end function

/* coordinator executes the following code */
10 Function COORDINATOR (t)
11 V ← receiveFrom()
12 for each received value vti do
13 m0 ← maxValues{V}
14 for 1 ≤ i ≤ n do
15 [L0, H0] ← filterRESET(v0

i , Wo)
/* C sends n messages to all nodes and j messages to nodes with

violated filters */
16 send(m0, Si, [L0, H0])
17 `← m0

i

18 end function
19

27

3. Algorithms

Algorithm 6 presents how the adaptive filter is set and how the algorithm behaves
in ti ≤ 1.

Algorithm 6: Adaptive Algorithm t > 0
/* Initialisation of counters for filter violations and no violations */

1 pCshrink = 0
2 pCexpand = 0
3 ` = {}

/* distributed sensors execute this code */
4 Function SENSOR((Si, t)
5 for Sensor i do
6 vti ← read()

/* If value falls outside the filter */
7 if (vti and vti−1 < Li or vti and vti−1 > Hi) then
8 pCshrink← +1
9 pCexpand← 0

10 send(vti, C)
/* If value falls outside filter 5 times */

11 if (pCshrink = 5) then
12 send((vti, C), pCshrink)
13 pCshrink← 0

14 else
15 pCexpand← +1
16 pCshrink← 0
17 if (pCexpand = 5) then
18 send((vti, C expand)
19 pCexpand← 0

20 (m0
i , [L0, H0])← receiveFrom(C)

21 end function
/* coordinator executes the following code */

22 Function COORDINATOR(t)
23 V ← receiveFrom()
24 for each received value vti do
25 m0

t ← maxValues{V}
26 for 1 ≤ i ≤ n do
27 [L0, H0] ← filterRESET(vti, pCexpand/shrink)

/* C sends n messages to all nodes and j messages to nodes with
violated filters */

28 send(m0, Si, [L0, H0])
29 `← m0

t

30 end function
31

28

3. Algorithms

3.5 Online Top-k Position

The algorithm begins with the coordinator determining the k-th and (k + 1)-st
largest value and, based on their midpoint midP 0

i , a filter set. A broadcast of this
value is then made to all the distributed nodes. It is assumed that the coordinator
and the sensors are on the same network and thus, the broadcast takes a unit
communication.
Algorithm 7: Initialisation stage for Online Top-k Position

1 Input: Each sensor read value v0
i

2 Output: Midpoint midP 0
i value is calculated at C

3 ` = {}
4 Function SENSOR(Si, t)
5 for Sensor i do
6 v0

i ← read()
7 send(v0

i)
8 midP 0

i ← receiveFrom(C)
9 end function

10 Function COORDINATOR (t)
11 V ← receiveFrom()
12 for each received value vti do
13 m0

i ← maxValues{V}
14 midP 0

i ← top−k+1/2
/* C broadcast the current Mid-point */

15 broadcast(midP 0
i)

16 `← m0
i

17 end function
18

And during the rounds t > 2, a distributed sensor is only permitted to communicate
it’s value to the coordinator only when there is a filter violation. A filter is violated
when a node is within the non top-k sets but its current value is above midP t

i or
if its within the top-k set but its current value is below midP t

i . A new top-k set is
calculated after a filter violation, hence a new midpoint midP t

i is also calculated and
broadcasted to all the nodes (broadcast cost a unit message). Depending on whether
the maximum or minimum top-k are of interest, we apply either the maximum or
minimum protocol respectively.

In this paper, the maximum top-k is of interest and therefore we will elaborate on
how it is determined. To determine this maximum top-k value, random values are
generated for all the nodes. The coordinator then performs Bernoulli trials which
a probability rate of 2t/n. This is synonymous with flipping a coin because based
on the outcome of the computation, nodes with random values above or below the
probability rate are assigned 1 or 0 respectively. Nodes with a probability rate of 1
sends their values to the coordinator and deactivates themselves. The coordinator
will then compute the highest value and broadcast it to the nodes. In the next

29

3. Algorithms

round, the remaining nodes will begin the algorithm again by being assigned random
numbers and based on the probability rate, if it is assigned 1 or 0 in a similar fashion
as before. At this point, a node with 1 probability rate can only send its value to
the coordinator if its value is greater than the received broadcast value, otherwise,
it deactivates. If at the end of this round, a node has sent, a higher value, the
coordinator computes a new maximum and broadcast to the remaining nodes to
begin the algorithm. This is done iteratively until all nodes turns inactive and
deactivates.
Algorithm 8: Online Top-k Algorithm at ti > 0

1 Input: Each sensor read value v0
i

2 Output: Midpoint value midP t
i is calculated at C

3 ` = {}
/* sensors excute this code */

4 Function SENSOR(Si, t)
5 for Sensor i do
6 if vti > midPorvti > top− k then
7 active ← true
8 if Node i is active then
9 if maxti−1 > vi then

10 goto line 118
11 p ← Result from coin flip with success-probability 2t/n
12 if p = 1 then
13 send(vi, C);
14 active ← false
15 if all nodes active = false then
16 send(vi, C, max)

17 end function
/* coordinator executes the following code */

18 Function COORDINATOR (t)
/* C receives all values sent */

19 V ← receiveFrom()
20 for each received value vti do
21 m0

i ← maxValues{V}
22 `← m0 broadcast(top-k)
23 if ((vti, C, max) = receiveFrom()) then
24 midP t

i ← top−k+1/2
/* C broadcast the current Mid-point */

25 broadcast(midP t
i)

26 end function

30

3. Algorithms

3.6 Simple Online Top-k Position

In implementing an adaptation of the top-k algorithms, we choose the strengths in
the afore-implemented algorithms. The algorithm thus poses some characteristics
of the simple and online position top-k algorithm. This is ideal for applications
or systems which can allow a level of error in the top-k values. Consider a single
designated coordinating sensor S0 and several distributed sensor Sn reading values
at each time t (eg. t = 1 second). At the initialisation stage, all remote sensors
send their values to the coordinator for a filter midP 0

i to be determined. midP 0
i is

determined by setting a midpoint between the top-k and top-k + 1st value, that is,
top-k + 1st/2. For example if C receives {3, 7, 8, 1 6, 4, 7, 1, 5, 9} at t0. If k =
2, then top-k set = (9, 8), therefore least of the top-k is 8 and top-k + 1st is 7. It
is then broadcast to all the remote nodes with a parameter ε, which serves a level
of approximation. At time step t0 all sensors communicate their observation and
receive the mid-point value together the approximation rate.

Algorithm 9: Initialisation stage for Simple Online Top-k Position
/* time t = 0 */

1 Input: Each sensor reads value v0
i

2 Output: Midpoint value midP t
i is calculated at C

3 ` = {}
4 Function SENSOR(Si, t)
5 for Sensor i do
6 v0

i ← read()
7 send(v0

i)
8 (m0

i , ε)← receiveFrom(C)
9 end function

/* coordinator executes this code */
10 Function COORDINATOR (t)
11 V ← receiveFrom()
12 top-k ← maxValues{V}
13 for 1 ≤ i ≤ n do
14 midP t

i ← top−k+1/2
/* C broadcasts the current Mid-point */

15 broadcast(midP t
i , ε)

16 `← m0
i

17 end function
18

In future rounds or time steps, the remote sensors only communicate their values
to the coordinator when there is a violation of the filter. A filter is violated when a
sensor outside the top-k set reads a current value that is ε away from the midpoint
mt

0. The value of ε together with mt
i is received from the coordinator at t ≥ 1.

31

3. Algorithms

Algorithm 10: Simple Online Top-k Position
/* time t = 0 */

1 Input: Each sensor reads value v0
i

2 Output: Midpoint value midP t
i is calculated at C

3 ` = {}
/* sensor executes this code */

4 Function SENSOR(Si, t)
5 if vti −midP > ε− approximation or vti > top− k then
6 for Sensor i do
7 active ← true;
8 if Node i is active then
9 if maxti−1 > vi then

10 goto line 156
11 p ← 2t/n
12 if p = 1 then
13 send(vti, C);
14 active ← false;
15 if all nodes active = false then
16 send(vti , C,max);

17 (mt
i, ε)← receiveFrom(C)

18 end function
/* coordinator executes this code */

19 Function COORDINATOR (t)
/* C receives all values sent */

20 V ← receiveFrom()
21 for each received value vti do
22 m0

i ← maxValues{V}
23 `← m0 broadcast(top-k)
24 if ((vti, C, max) = receiveFrom()) then
25 midP t

i ← (top−k+(top−k+1))/2
/* C broadcast the current Mid-point */

26 broadcast(midP t
i)

27 end function

To determine mt
i, the maximum top-k value must first be computed in a similar

manner as it’s done in the online position of the top-k. This is outlined below:
1. This is done by generating random values are for all the remote sensors. The

coordinator then conducts Bernoulli trials which a probability rate of 2t/n.
2. Sensors with random values above or below the probability rate are assigned

1 or 0 respectively.
3. The sensors that are assigned with 1 communicate their values to the coordi-

nator and deactivates from the system.
4. The coordinator then compute the highest value and broadcast it to the sen-

sors.

32

3. Algorithms

In the succeeding rounds, the remaining nodes will begin the algorithm again until
all the sensors deactivate. The coordinator then computes the mid-point, that is
top-k+1st/2. The result is then broadcasted together with an ε-approximation rate
of error to all the nodes.

33

3. Algorithms

34

4
Evaluation Methodology

This section seeks to systematically outline the procedure we used to determine the
efficiency of each algorithm. It begins by presenting the datasets that were used in
our experiments. It proceeds with the implementation choices that were taken to
successfully simulate each of the algorithms. This is followed by an elaboration on
the metrics used in evaluating the algorithms and how the simulations were set up.

4.1 Data Set
CPU Load Dataset
The first dataset comprises hardware statistics retrieved during a load testing pro-
cedure in an Evolved Packet Configuration (EPC) from Ericsson. During a stability
test of a small EPG testing environment, the dataset was captured. There are 2021
rounds of data to be monitored by 720 nodes representing the distributed sensors
or CPS. An observation made from the dataset is that, the values are small and
repetitive across rounds or time steps. In sections where they differ, there exist
an insignificant differences between them. The table below is a snippet from the
dataset. Figure 4.1 illustrates values read by sensors S1, S2, S720, and the top-k for
each time step.

Time Sensor1 sensor2 Sensor3 Sensor4 ... Sensor719 Sensor720
1 0.4105 0.8405 0.6815 0.8405 ... 0.193865 0.208654
2 0.616333 0.744333 0.632333 0.610667 ... 0.20617 0.214075
3 0.6285 0.79175 0.575 0.74 ... 0.212907 0.231
.
.
.
2020 84.9191 77.1779 79.8717 80.9592 ... 70.4767 71.4676
2021 84.9191 77.1779 79.8717 80.9592 ... 70.4767 71.4676

Table 4.1: Snippet Of CPU Load Dataset

Packet Processing Rate Dataset
This data was also obtained from Ericsson. It is made up of values representing
packet processing rates. Similarly, there are 720 nodes hence Sn = 720. Also, there
are 2021 rounds of data to be monitored by the sensors meaning tj = 2021. Though
this dataset constitutes larger values, they are also quite repetitive across rounds. A

35

4. Evaluation Methodology

Figure 4.1: Values Read By Sample Sensors

snippet of the data is presented below. Figure 4.2 presents values read by sampled
sensors and the top-k value for each time step.

Time Sensor1 sensor2 Sensor3 Sensor4 ... Sensor719 Sensor720
1 0 0 0 0 ... 6208 6896
2 1 0 0 0 ... 6634 7354
3 2 0 1 7 ... 7052 7777
.
.
.
2020 813 1930 1829 1865 ... 20278024 20203419
2021 813 1930 1829 1865 ... 20278024 20203419

Table 4.2: Snippet Of Packet Processing Rate Dataset

Figure 4.2: Values Read By Sample Sensors

36

4. Evaluation Methodology

Time Sensor1 sensor2 Sensor3 Sensor4 ... Sensor68 Sensor69
1 -1 -1 -1 -1 ... -1 -1
2 -1 -1.1 -1.2 -1.3 ... 12.99 11.78
3 -1 -1 -1 -1 ... -1 -1
.
.
.
1438 -1 -1 -1 -1 ... -1 -1
1439 -1 -1 -1 -1 ... -1 -1

Table 4.3: Snippet Of Temperature Dataset

Speed Measurement Dataset
The next dataset consists of trajectories collected within the scope of the Geolife
projects by Microsoft Research Asia. This was collected on vehicular speed. When
the vehicle is not in motion the sensor read -1 and it is clear from the dataset that
the majority of the vehicles were not in motion in most rounds. This pattern can
be observed from the table below whilst Table 4.3 gives an overview of values read
by sample sensors. It constitutes 1438 nodes, a single coordinator and 9762 rounds
of monitoring data.

Figure 4.3: Values Read By Sample Sensors

Temperature Values Dataset
Measurements of temperature values from Inter Lab laboratory is the last dataset. If
a sensor is not reading a value at a time step, it communicates 0 to the coordinator.
It is observed that some sensors did not read any value through out the measuring
duration. There are 68 monitoring sensors and 12500 rounds of data. The below is
also a snippet of this data set.

37

4. Evaluation Methodology

Time Sensor1 sensor2 Sensor3 Sensor4 ... Sensor68 Sensor69
1 -1 -1 -1 -1 ... -1 -1
2 -1 -1.1 -1.2 -1.3 ... 12.99 11.78
3 -1 -1 -1 -1 ... -1 -1
.
.
.
1438 -1 -1 -1 -1 ... -1 -1
1439 -1 -1 -1 -1 ... -1 -1

Table 4.4: Snippet Of Temperature Dataset

Figure 4.4: Accumulated Number Of Communication Per Time

4.2 Implementation Design Choices
This section outlines the key implementation choices that led to the successful im-
plementation of existing algorithms and our adaptation or modification. The pro-
gramming language, libraries, and data structures that were used are deliberated
upon in this section.
Programming Language. Python is the scripting programming language used
in the implementation of the algorithms. It emerged as the best-fit for this task
because of its fast data processing capabilities. Additionally, it inhibits a clean
object-oriented design, provides enhanced process control capabilities, and possesses
strong integration and text processing capabilities together with its own unit testing
framework. All of these contribute to the enhancement in speed and productivity.
Python also has a built-in list and dictionary data structures that can be used to
construct fast run-time data structures.
Libraries. As afore-mentioned, the chosen programming language provides a vast
number of libraries hence, its suitability for our implementation. To better analyse
and manipulate the respective datasets, pandas library was employed. Pandas is a
fast, powerful, flexible and easy to use open source data analysis and manipulation
tool, built on top of the Python programming language. It helps in converting csv

38

4. Evaluation Methodology

files into data that is more readable by computers and also store them in data frames
which can be easily accessed and manipulated anywhere in a program.
Matplotlib, a visualisation library in Python which provides an object-oriented API
for embedding graphs into applications using general-purpose GUI toolkits. This
library was used in our work to generate 2D graphs by plotting arrays of values
comprising of the distribution in the number of communication, the average number
of communication per round, top-k computation accuracy rates, etc after an entire
simulation.

4.3 Evaluation Metrics
To determine the efficiency or quality of each algorithm, we needed a metric to verify
this. Three important metrics were selected, that is communication complexities,
computation time and accuracy rate. These were thus the basic requirements of the
algorithms implemented in this work.
Communication complexity. It is the total number of communication exchanged
between the designated coordinating sensor and the distributed tracking sensors.
A mechanism was devised to track the communication per round and the total
accumulated communication after the entire simulation. It must be emphasised
that, the higher the total number of communication, the higher the communication
complexity. Likewise, higher communication complexity results in higher overhead
costs and vice versa. On the contrary, higher communication complexity means
a lower performance with respect to achieving better communication overheads.
Hence, the higher the communication complexity of an algorithm, the lower the
metric of the algorithm in terms of efficiency.
Time complexity. This is the total amount of time it takes to simulate the en-
tire algorithm. The use of similar data structures and datasets, provides a uniform
platform in determining the efficiency of each algorithm with respect to time com-
plexity. The inbuilt time function in python is called before and after the simulation
to determine the amount of time used by each algorithm. The larger the amount of
time used in a simulation the lower the efficiency of that algorithm in terms of time
complexity.
Top-k computation accuracy rate/ correctness. The ability of an algorithm
to compute valid top-k values and to accurately determine the sensor that read it
for each time step, determines its computation accuracy rate. This means that, an
algorithm can accurately compute the top-k value and inaccurately determine the
sensor that read the value. We therefore implemented this function to track how
accurate the algorithms do their computations.

4.4 Simulation Setup And Experiments
Several experiments were conducted using different non-synthetic datasets from var-
ied sources as presented in section 4.1. A single experiment constitutes simulating

39

4. Evaluation Methodology

all the six algorithms independently. In each simulation, we executed a designated
coordinating sensor function to receive values and another function representing the
remote sensors that read and communicate their values to the coordinator. The
simulations were conducted on a single core since communication latency (which is
a product of distance, data size and channel of communication) was not of interest.
Memory usage by these sensors was also not considered in this setting.
All the datasets were in csv files. Each column in a file represents data to be read
by a distributed tracking sensor or CPS and communicated to the coordinator for
the top-k value(s) to be computed. Additionally, a row represents a round or time
step t. Therefore, the remote sensorśfunction was implemented to read values from
a pandas DataFrame imported from the csv files. The values read by the sen-
sorśfunction is sent to a coordinator function if a condition is satisfied (depending
on the algorithm). The coordinator function keeps track of sensor communicating
the maximum value (top-k) in each time step. The functions are modular and thus
accept all types of values from a DataFrame. Some properties of the interaction
between the coordinator and the distributed sensors functions were also modelled
or implemented to monitored these properties. Listed under their respective exper-
iments are the properties that were monitored.
Experiment 1. The first experiment was conducted using CPU load dataset from
Ericsson. In this simulation setup, the following were monitored and recorded for
analysis.

1. Average number of communication per time step.
2. Number of accurately computed top-k value.
3. Number of accurately computed sensor with top-k .
4. Total duration by sensors during simulation.
5. Total duration by coordinator during simulation.
6. Effects of the level of approximation bounds or precision control on communi-

cation, top-k accuracy and computation times.
7. Average deviation by the approximation algorithms per simulation.

Experiment 2. This experiment was also conducted using the packet processing
sizes dataset from Ericsson. The following were also of interest and recorded for
future analysis.

1. Average number of communication per time step.
2. Number of accurately computed top-k value.
3. Number of accurately computed sensor with top-k.
4. Effects of the level of approximation bounds or precision control on communi-

cation, top-k accuracy and computation times.
5. Total duration for simulation.
6. Average deviation by the approximation algorithms per simulation.

Experiment 3. Another experiment was also conducted using the temperature
values dataset Interlab. The following are the vital components of this simulation
setup that were recorded and subjected to further analysis.

1. Average number of communication per step.
2. Number of accurately computed top-k value.
3. Number of accurately computed sensor with top-k .

40

4. Evaluation Methodology

Experiment 4. In the last experiment, we used the vehicular speed dataset from
Asia. The following were properties of the algorithms that were tracked and used
for our analysis.

1. Average number of communication per time step.
2. Number of accurately computed top-k value.
3. Number of accurately computed sensor with top-k.

41

4. Evaluation Methodology

42

5
Results

To test the efficiency of the algorithms under investigation and to find grounds to
answer our research questions, several experiments or simulations were conducted
on different datasets. After the numerous simulations of the various algorithms with
these datasets, several graphs and tables were generated. These graphs were then
subjected to rigorous analysis and discussions. It must be emphasised that, all the
algorithms are deterministic. That is to say, they will select the same top-k when
presented with the same dataset at different times. The succeeding sections of this
chapter present our experimental results and their analysis. Values and messages
are used interchangeably.

5.1 CPU Usage Experiment
This experiment involves the simulation of CPU usage datasets from Ericsson. There
were 720 distributed CPS or IoT sensors (n = 720) reading the load sizes and
sending it to a single coordinator C. The simulation lasted for 2021 rounds (that is,
tj = 2021). Essentially, these simulations are applicable in distributed systems that
seek to achieve better CPU load balancing. Examples of such distributed systems
include autonomous vehicles, cloud computing virtual Instances, web search engines.
In these simulations k = 1 whilst time step t = 1 round.

5.1.1 A Tour Of All Tested Algorithms
In this section, we will analyse the results of the simulation. Some of the vital com-
ponents of the analysis include the number of messages communicated between the
distributed sensors and the central coordinator, mean distribution of such commu-
nication, the accuracy of the various algorithms in computing valid top-k values,
computation time, etc.

5.1.1.1 Number Of Communication

The focus here is to determine the average communication per round and the mean
distribution of communication between the distributed monitoring sensors and the
designated coordinator after the simulation. This is to help evaluate the communi-
cation performance of the algorithms under investigation.
The graphs in Figure 5.1 are the simulation results of the naive-polling algorithm.
With all sensors transmitting values being read in every round or time step, it can

43

5. Results

Figure 5.1: Naive-Polling Algorithm

be realised from the first graph in Figure 5.1 that, at each time step, 720 messages
are sent to the coordinating sensor C. This leads to a horizontal slope. The second
graph also illustrates the total accumulated number of values sent to the coordinator
during the entire simulation when time t2021. Also, with the same number of values
being transmitted during each time step, the accumulated number of communication
increases at a constant rate. This leads to a steady rise in the accumulated number
of communicated values over time as depicted in the second graph in 5.1. This will
lead to high overhead cost due to the volume and frequent transmission of values as
claimed by [10].

Figure 5.2: Basic-Exact Algorithm

Figure 5.2 represents the simulation results from the basic-exact algorithm. The
same data sets were used as in the naive-polling algorithm. As afore-mentioned in
chapter 3, if a sensor reads the same message as the preceding round, the current
message is not read. It must be emphasised that, the coordinator thus uses the
last communicated value in its k computation. The repetitive nature of the dataset
led to a varied number of values being transmitted to the coordinator at each time

44

5. Results

step t as depicted in the first graph in Figure 5.2. This means that, the higher the
repetitive number of values in preceding rounds, the lower the number of values that
are likely to be transmitted to the coordinator and vice versa. As can be witnessed
from the first graph in 5.2, all values were transmitted to the coordinator during
the first round (t = 0) because there were no preceding values to compare with.
The number of communicated values decreased immensely after the initialisation
round. Therefore, looking at the average number of communication in this algo-
rithm in comparison with the naive-polling algorithm, there is a lower number of
communication. This can be visualised from the slope in the second graph in Figure
5.2 which presents the accumulated number of communication recorded during the
entire simulation of this algorithm.

Figure 5.3: Simple 1.5%-Approximation Algorithm

Results of the simple ε-approximate algorithm are also presented in Figure 5.3. The
first graph depicts the average number of values sent in each round to the desig-
nated coordinator. With some level of approximation allowed by this algorithm, 1.5
percent of error guarantee bound was permitted in the simulation, that is ε = 1.5.
It means that, if the difference in the last communicated value and the current
value is within 1.5 percent, the value is not read and the coordinator uses the value
previously sent by the distributed sensor. Relatively, a lower amount of messages
are sent in each round with exception of the initialisation round where all values
are transmitted to the coordinator. In the subsequent rounds, the average num-
ber of communicated values reduces substantially as depicted in the first graph in
Figure5.3. This explains why the slope for the accumulated number of the com-
municated values (that is, the second graph) flattens from time step t750 until the
end.
In Figure 5.4, the simulation results for the adaptive filters algorithm are presented.
We employed a precision control of 0.05, meaning that, the difference between the
lower and upper bound is 0.05 (U - L = 0.05). Just as transpired in the previous
algorithms, all values or messages were transmitted to the coordinator during the
first round. The situation is different in the subsequent rounds as a number of

45

5. Results

Figure 5.4: Adaptive Filters-.05 Precision Algorithm

messages are filtered out and not communicated to the coordinator. This explains
why at time step t0, 720 values are transmitted to the coordinator but decreased
drastically in the leading rounds as witnessed in the first graph. At approximately
t125, the slope hits its lowest and begins to rise sharply and begins to flatten at time
t750 until the end of the simulation.

Figure 5.5: Online Position Top-k Algorithm

The next algorithm to be simulated is the online position top-k algorithm. The
results for this simulation are presented in Figure 5.5. In this simulation, values
are only transmitted to the coordinator when there is a violation as described in
section 3. The first graph in the Figure 5.5 illustrates the average number of values
communicated per each time step. It is seen from the graph that, the average
number of communicated values falls steeply after time t0 until t50, after which it
slowly fluctuates until the end of the simulation which is attributed to a number of
messages being filtered out. This explains why the slope for the total accumulated
communication is less steep.

46

5. Results

Figure 5.6: Simple Online Position Top-k Algorithm

We introduced in this work, simple online position top-k algorithm, an adaptation
of online position top-k and the simple ε-approximate algorithm. In this algorithm,
an ε error bound of 1.5 is allowed on the mid point as determined in the online
position top-k algorithm. The simulation results are presented in Figure 5.6. In the
first graph which represents the average number of communication per time step, it
is evident that the number of messages transmitted in each round drops significantly
after the first t0. Compared to the simple ε-approximate algorithm or the online
position top-k, a relatively larger volume of communication was witnessed during
the simulation of this algorithm. This explains why the slope for the online position
top-k algorithm is much steeper than the simple ε-approximate algorithm and the
online position top-k algorithm.

Figure 5.7: Comparison Of All Algorithms

To better compare the performance of all the above algorithms in terms of com-
munication efficiency, the communication per each algorithm is displayed in Figure
5.7. The second graph corresponds to the total accumulated number of communi-

47

5. Results

Algorithm Naive Basic Simple
- 1.5%

Adaptive
-0.05

Online
top-k

Simple
Online

Time Steps 2021 2021 2021 2021 2021 2021
Communication 1455120 742456 219710 1227922 634306 969130
Rate (%) 100 51.02 15.09 84.39 43.91 66.6

Table 5.1: Total Accumulated Communication

cation recorded by the various algorithms during their respective simulations. It
must be noted that, the lesser the communication, the better the communication
efficiency. From this graph, it is clearly seen that the simple 1.5%-approximate
algorithm has the best communication efficiency. This is followed by online top-k
position, basic-exact, simple online top-k position, adaptive-.05 precision filters and
lastly, naive-polling algorithms in that succession.
We also wanted to find out whether an increment or decrement in the error bound
for the simple ε-approximate algorithm and the expanding or shrinking of precision
control for the adaptive filters-δ precision algorithm will have an impact on their
communication efficiency. Several simulations were then run with 5% and 7.5%
approximations and precision controls of 3 and 5 for the simple ε-approximate and
adaptive filters-δ precision algorithms respectively. The results are presented in
Figure 5.8. This really had a substantial impact on the communication complexity
for the adaptive filter-δ precision unlike the simple algorithm as seen in both graphs.
This can be attributed to the insignificant difference between values in the dataset.

Figure 5.8: Effects Of Error Bound On Communication

The exact communication performance of these algorithms are presented figuratively
in Table 5.1.
To illustrate the distribution of communication by the respective algorithms, a box
plot is employed. With the constant volume of communication recorded in the
naive-polling, it is justifiable of a mean communication value of 720 without any

48

5. Results

outliers. Mean distribution of approximately 340 was recorded by the basic-exact
algorithm with only one outlier of 720 which was recorded at the initialisation stage.
Due to the lower volumes of communication achieved with the simple ε-approximate
algorithm, less than 50 mean distribution is achieved. On the contrary, the large
volumes of communication recorded for the adaptive-filters-δ precision, a mean of
approximately 650 with some amount of outliers.

Figure 5.9: Distribution Of Communication

5.1.1.2 Top-k Accuracy Rate / Correctness

Algorithm Naive-
Polling

Basic-
Exact

Simple
5%

Adapt
0.05

Online
Top-k

Simple
Online

Time Steps 2021 2021 2021 2021 2021 2021
Accurate Values 2021 2021 485 1758 1391 2021
Accuracy Rate 100% 100% 24.00% 86.99% 68.83% 100%
Avg Deviation 0.00% 0.00% 1.67% 0.42% 1.54% 0.00%

Table 5.2: K Computation Accuracy Rate

In as much as we are interested in finding out the communication efficiency, we
are also interested in determining the accuracy with which each of these algorithms
computes the top-k value. The results are presented in Table 5.2. It can be observed
from the table that, the naive-polling, basic-exact and simple online top-k position
algorithms accurately computed the top-k values at each time step. Also, adap-
tive filters-δ precision, simple ε-approximate and online top-k position algorithms
recorded an accuracy rate of 86.99, 24.00 and 68.83 respectively. The margin of
error or deviation of these algorithms from the accurate naive-polling top-k value(s)
have been presented in Figure 5.10
One important observation made from this analysis is that, the higher the commu-
nication efficiency and higher top-k determination accuracy rate. It can therefore

49

5. Results

be said that, there is a positive or direct correlation between the communication
complexities and rate of accuracy in determining the top-k values.

Figure 5.10: Top-k Value Computed Per Time Step

We also sort to examine the accuracy with which the coordinator computes the
sensor node with the k value(s). In case of a tier break in the top-k value(s),
sensors with the least ID numbers are considered in the implementation of the
algorithms. For example, if Si > Sn but Si , Sn = vt, then Si will be selected. In the
approximation algorithms, it is possible for the coordinator to accurately compute
the right k sensor value(s) but inaccurately compute the right sensor node with the
top-k values and vice versa. The simulation results for this experiment are presented
in Figure 5.11.

Figure 5.11: Top-k Values Vs Sensor Accuracy Rate

5.1.1.3 Computation Time

One area of interest is the processing time with which the algorithms compute the
top-k values. This is necessary for real-time applications where urgency in compu-
tation is of the essence. Therefore, the duration of each simulation was recorded and

50

5. Results

the results are presented in Table 5.3. The best algorithm in terms of processing time
is the naive-polling, followed by the basic-exact algorithm. The worse performing
algorithms are adaptive filters-0.05 precision and adaptive filters-2.0 precision.

Algorithm Naive-
Polling

Basic-
Exact

Simple
1.5%

Simple
5%

Adapt
0.05

Adapt
2.0

Online
Top-k

Simple
Online

TimeStep(ms) 21.5 115.1 266.1 236.5 344.2 377.9 240.2 190.7
Coord(ms) 19.01 65.9 18.38 17.9 60.8 66.7 21.36 23.8
Total (sec) 43.5 232.6 537.8 477.9 695.7 763.7 485.277 385.488

Table 5.3: K Computation Time

5.2 Packet Processing Rates Experiment
The second experiment was conducted on a dataset that constitutes packet process-
ing rates obtained from Ericsson. This also involves 720 distributed CPS or IoT
sensors (n = 720) and a single coordinator C. There is a maximum of 2021 rounds
or time steps of reading data. In the comparison of this dataset and the dataset
used in experiment 1, this dataset has relatively larger differences between the val-
ues. Similarly, these simulation results are also essential to monitor the distribution
of packets across a mobile network architecture.

5.2.1 Comparison Of All Tested Algorithms
As done in the previous experiment, this section will focus on analysing the simula-
tion results. This will go a long way to further buttress our findings to improve the
answers to our research questions.

5.2.1.1 Number Of Communication

Figure 5.12: Average Number Of Communication Per Time

51

5. Results

Algorithm Naive-
Polling

Basic-
Exact

Simple
- 1.5%

Adapt
0.05

Online
Top-k

Simple
Online

Time Steps 2021 2021 2021 2021 2021 2021
Communication 1455120 730079 329645 1449894 488495 969914
Rate (%) 100 1.20 0.02 85.97 67.23 0.81

Table 5.4: Total Accumulated Communication

Figure 5.12 is a representation of the average number of communication at each
time step after the simulation of the respective algorithms using the packet size
dataset. It can be seen from this figure that, the slope for naive-polling algorithm
is not different from the one in the first experiment. The reason again being that,
all values are transmitted to the central coordinator without any form of filtering.
Hence, the plateau nature of the slope.
It is also realised that, there is 720 communications during initialisation round t0
for the basic algorithm. The number of communication begins to decrease sharply
after the initialisation stage until time step t200 and then stabilises until the end of
the simulation. This could be attributed to the distinct nature of the data in the
initial stages and how repetitive it becomes during the later stages.
An error guarantee bound of 1.5 percent was again allowed here, that ε = 1.5% for
the simple approximation. From the graph, it is realised from the slope for simple
ε-approximation that, the number of communication decreases significantly after the
initial stages of the simulation. This means large volumes of values are filtered out
after the initial stage.
The next slope to consider is the adaptive filters-δ precision algorithm. The precision
control used in this experiment is 0.05. A larger amount of communication was
recorded by this algorithm since most of the values read by the distributed sensors
were in violation of the filters.
The online top-k position slope also dips sharply until t230. It then fluctuates after
the drop, until t2021. This happens to be one of the most efficient algorithms in
terms of communication in this experiment.
The last algorithm that was simulated in experiment 2 is the simple online top-k
position algorithm and the results are depicted by the green slope. Similarly, it
could be witnessed that, the slope falls sharply until it reaches approximately 480
at step t200. It then maintains a relatively flat slope to the end which means the
average communication is stable during those time periods.

To monitor how this dataset also reacts to an increment or decrement in error
guarantee bound and precision control for simple ε- approximation and the adaptive
filter-δ precision respectively, other simulations were setup. In these simulations, ε
= 5 and ε = 7.5 whilst precision control is 3 and 5. This leads to a reduction in the
number of communication from 329645 to 156200 for a simple 5%- approximation
and from 1449894 to 1284801 for the adaptive filters-δ precision. Figure 5.13 is a
presentation of the results after adjusting the level of approximation and filters.

Figure 5.14 elaborates on the distribution of communication for all the algorithms.
It must be emphasised that, the lower the mean, the better the communication

52

5. Results

Figure 5.13: Average Communication Per Time Step

performance.

Figure 5.14: Distribution Of Communication

5.2.1.2 Top-k Accuracy Rate

At this point, we analyse the results to see the accuracy with which the various
algorithms determined the top-k values after the entire simulation. The results are
presented in the table below. In this table, it can be noticed that naive, basic and
simple online top-k position algorithms obtained a 100 percent accuracy rate in
determining the top-k values.

53

5. Results

Algorithm Naive-
Polling

Basic-
Exact

Simple
1.5%

Adapt.
0.05

Online
Top-k

Simple
Online

Time Steps 12500 12500 12500 12500 12500 12500
Accurate values 12500 12500 378 9429 1217 12500
Accuracy Rate 100% 100% 3.02% 75.43% 9.73% 100%
Avg Deviation 0.00% 0.00% 1.39% 2.82% 0.34% 0.00%

Table 5.5: Top-k Accuracy Rate

It was again observed that, there is a direct correlation between a number of commu-
nication and a number of accurately computed k values but an inverse relationship
between the communication efficiency and the accuracy rate for computing the k
value(s). That is, the higher the communication efficiency, the lower the accuracy
rate and vice versa. Hence, although the simple ε-approximate algorithm has the
best communication complexity, it obtained the worst accuracy rate in computing
the k value. Similarly, although the naive algorithm achieved the highest communi-
cation complexity, it also achieved the best accuracy rate. After widening the error
bound and filters, we also determined how it affects the accuracy rate. The results
are presented in Figure 5.11. Figure 5.15 also illustrates how the tested algorithms
deviated from the accurate top-k values computed by the naive-polling algorithm

Figure 5.15: Deviations Of Top-k Values Per Time

We also examined to see the accuracy with which the algorithms select the sensor
or node with the top-k value. As said earlier, the approximate algorithms have a
tendency for the coordinator to compute the accurate k values but not the sensors
in cases where multiple sensors read the same data. This is depicted in Figure 5.16.

5.2.2 Computation Time
The various simulations of the algorithms were monitored to compare the compu-
tation or processing time used by these algorithms to compute the top-k value(s).
The table below presents the average time per time step per sensor, total time by
all sensors and by the coordinator and the total time used by both the sensor and
the coordinator in the simulation of the algorithms.

54

5. Results

Figure 5.16: Top-k Computation Accuracy Rate

Algorithm Naive-
Polling

Basic-
Exact

Simple
1.5%

Simple
5%

Adapt
0.05

Adapt
3.0

Online
Top-k

Simple
Online

TimeStep (ms) 24 141.54 231.09 260.27 586.44 622.51 431.05 176.97
Total (sec) 49.436 286.06 467.041 526.189 1185.2 1258.4 871.148 357.664

Table 5.6: Processing/ Computation Time

55

5. Results

5.3 Speed Measurement Experiment
Experiment 3 was conducted on speed measurements extracted from GPS traces
as presented in Figure 4.3. This also involves 9762 distributed monitoring sensors
(n = 9762) reading the positions and communicating them to a single coordinator
C. There is a maximum of 1348 rounds or time steps of reading data.

5.3.1 Analysis Of Results
This section will dwell on analysing the simulation results for the experiments. The
analysis will be centered on the communication efficiency and accuracy rate for
computing valid k = 1 value for each time step.

5.3.1.1 Number Of Communication

Figure 5.17: Average Number Of Communication Per Time

The figure above is a representation of the average number of communication at each
time step after the simulation for the respective algorithms using the read values. It
can be seen from this figure that, the slope for adaptive filters-δ precision (δ = 1.0),
simple-5% approximate algorithms are almost the same. This can be explained by
the insignificant differences between the number of communication recorded in each
time step.
It is also realised that, the average number of communication recorded for the simple
online top-k position and the online top-k position was quite large, that is around
6000. The horizontal slope for the naive-polling algorithm can again be explained by
the 9762 values being communicated by the distributed sensors during each round.

56

5. Results

Algorithm Naive
Polling

Basic
Exact Simple Adapt.

1.0
Online
Top-k

Simple
Online

Time Steps 1438 1438 1438 1438 1438 1438
Communication 14037756 1078218 973985 1084672 8678388 9361394
Rate (%) 100 7.68 6.93 7.73 61.82 66.69

Table 5.7: Total Accumulated Communication

Based on Figure 5.17, we are able to see the performance of the algorithms in terms of
total average communication after the experiment. Simple ε-approximate, adaptive
filters and basic-exact algorithms recorded similar values. For this reason, the slopes
appear clustered together as the best performing algorithms in this experiment.
Online top-k emerged as the next best algorithm, followed by the simple online
top-k position and naive-polling being the least performing algorithm. Table 5.8
presents a summary of the communication efficiency of all the algorithms.

Figure 5.18 elaborates on the distribution of communication for all the algorithms.
It must be emphasised that, the lower the mean, the better the communication
performance. Similarly, the graph again depicts simple ε-approximate, basic-exact
and adaptive filters-δ precision as having the lowest mean with a single outlier being
the values read during time step t0. As usual, the naive polling algorithm recorded
the highest mean of 9762.

Figure 5.18: Distribution Of Communication Per Algorithm

5.3.1.2 Top-k Accuracy Rate

At this point, we analyse the results to see the accuracy with which the various
algorithms determined the top-k values after the entire simulation. The results are
presented in Table 5.8. In this table, it can be noticed that naive, basic and simple
online top-k position algorithms obtained a 100 percent accuracy rate in determining
the top-k values.

57

5. Results

Algorithm Naive-
Polling

Basic-
Exact

Simple
5%

Adapt
1.0

Online
Top-k

Simple
Online

Time Steps 1438 1438 1438 1438 1438 1438
Accurate values 1438 1438 718 1314 1331 1438
Accuracy Rate 100% 100% 49.79% 91.77% 92.56% 100%
Avg Deviation 0.00% 0.00% 0.51% 0.08% 0.07% 0.00%

Table 5.8: Total Accumulated Communication

Just like in experiment1, it has again been observed that, there is a direct corre-
lation between number of communication and top-k accuracy rate but an inverse
correlation between the communication efficiency and the accuracy rate for com-
puting the k value. That is, the better the communication efficiency, the lower the
accuracy rate. Hence, although the simple ε-approximation algorithm has the best
communication complexity, it obtained the worst accuracy rate in computing the k
value. Similarly, although the naive algorithm achieved the highest communication
complexity, it also achieved the best accuracy rate.

Figure 5.19: Top-k Computation Accuracy Rate

Figure 5.20: Deviation From Top-k Values Per Time

58

5. Results

5.4 Temperature Values Experiment
A final experiment was conducted on temperature values from Inter Lap. The num-
ber of distributed tracking sensors is 58 and a single coordinator C. The simulation
constituted 12500 rounds or time steps of data.

5.4.1 Number Of Communication

Figure 5.21: Average Number Of Communication Per Time

The graph Figure 5.21 represents the average number of communication per time by
all the respective algorithms. After the simulation, the simple 2.5%-approximation
algorithm emerged as the most efficient. The algorithm is begun by communicating
all its readings to the coordinator but decrease to a minimum around t500 after
which they maintain a constant average until the end. This could be attributed
to the repetitive and insignificant difference between the values in the datasets.
The basic-exact algorithm is the second efficient in terms of the average number of
accumulated communication. This is also attributed to a large number of repetitive
values in the datasets. The online top-k position algorithm is next in succession
with respect to efficiency in the average number of communication per time. This
algorithm also begins by communicating all its values in the initialisation stage but
gradually reduces to a minimum until the time period 6000. This is followed by
the simple online top-k position. At the initialisation stage, it sends all its readings
to the coordinator but gradually reduces until around time 700. From this time
period on wards, it maintains an average accumulated communication of around
38. The simple online top-k position is succeeded by the Adaptive filters-δ precision
algorithm. A precision control of 0.005 was maintained in this experiment for the
adaptive filters-δ precision algorithm. Similarly, all its values are communicated
to the coordinator at the initialisation stage. It then drops steadily in the average
number of accumulated communication around the time period 800 and rises in again
gradually until the end of the simulation. It is also depicted in this graph, that the
average number of accumulated communications for the naive polling algorithm is
always the same at each time period, that is, 58 per every time period.

59

5. Results

Algorithm Naive-
Polling

Basic-
Exact

Simple
2.5%

Adapt.
0.005

Online
Top-k

Simple
Online

Time Steps 12500 12500 12500 12500 12500 12500
Communication 725000 8669 152 623276 5904 487427
Rate (%) 100 69.35 0.02 5.88 0.81 67.23

Table 5.9: Total Accumulated Communication

Based on Table 5.9, it can be concluded from this experiment that, simple ε-
approximation algorithm has the least amount of communication. This is followed
by the online top-k position and basic-exact, simple online top-k position, adaptive
filters-δ precision and the naive-polling algorithms.
Figure5.22 is a box plot of the communication per round of the various algorithms
to illustrate the general distribution of communication during the entire simulation.

Figure 5.22: Communication Per Round

This box plot depicts a mean distribution of communication for the naive-polling
algorithm to be 58 without any outliers. The mean communication for the basic-
exact algorithm is also approximately 0 with some outliers from above 30 to 50
and one at 58 which explains the communication at the initialisation stage. Simple
ε-approximation algorithm similarly has a mean communication of approximately 0
and a few outliers between 1 and 10 whilst there is a single outlier at 58 too which
can again be attributed to the communication at the initialisation stage. Also,
the mean communication for the adaptive filter-δ precision can be observed to be
approximately 50 and the 25th quantile around 48. Some outliers are also observed
between 0 and 48 with a single one at 58. Approximately 0 mean communication is
also recorded for the online top-k position algorithm with some outlier between 30
and 50. Again, there is a single outlier of 58 recorded during the initialisation stage.
The last algorithm represented on the diagram is the simple online top-k position
algorithm which obtains a mean communication of about 37 a few outliers between
25 and 30. It also has few outliers between 45 and 52 and similarly, 58 outliers
representing the communication during the time step t0.

60

5. Results

5.4.2 Top-k Accuracy Rate
A breakdown for the accuracy of which the respective algorithms determined the k
values in this experiment is presented in the table below.

Algorithm Naive-
Polling

Basic-
Exact

Simple
2.5%

Adapt.
0.005

Online
Top-k

Simple
Online

Time Steps 12500 12500 12500 12500 12500 12500
Accurate values 12500 12500 378 858 1217 12500
Accuracy Rate 100% 100% 3.02% 6.94% 9.74% 100%
Avg Deviation 0.00% 0.00% 1.67% 1.60% 1.54% 0.00%

Table 5.10: K Computation Accuracy Rate

Figure 5.23: K Computation Accuracy Rate

In this experiment, which constituted a simulation of temperature values from Inter
Lab, naive-polling, basic-exact and simple online top-k position algorithms deter-
mined the k values with 100 percent accuracy as depicted graphically in Figure 5.23.
With precision control of 0.005 used by the adaptive filters-δ precision algorithm, it
emerged as the 4th best accuracy rate of 75.43 percent. It was determined that, this
algorithm has a 0.42 percent average rate of deviation from the top-k value. This
is succeeded by an online position algorithm with an accuracy rate of 3.02 percent
and an average deviation of 1.54 percent. The algorithm with the worst accuracy in
determining the k value in this experiment is the simple ε-approximate algorithm
which also had an average deviation rate of 1.67 from the top-k value. Figure 5.24
represents how the margin of errors with which the non-exact algorithms deviated
from the valid values which were computed in the naive-polling algorithm.

61

5. Results

Figure 5.24: K Deviation From Top-k Values Per Time

62

5. Results

5.5 Discussion

Figure 5.25: Experiment 1

Figure 5.26: Experiment 2

After a rigorous analysis of the simulation results, some patterns were observed.
These are discussed in the paragraphs below.
First, the higher the rate of communication, the higher the accuracy rate for comput-
ing the k values. This means a direct correlation between the rate of communication
and accuracy rate. On the contrary, the better the communication efficiency, the
less efficient the accuracy rate in computing the k values. And thus, there is an
inverse correlation between the efficiency of communication and accuracy rate. It
was discovered that, while exact algorithms scored in top-k accuracy computation,
approximation algorithms scored high in communication efficiency.

63

5. Results

Second, the widening or shrinking of the precision control for the adaptive filters-
δ precision or the error guarantee bound for the simple ε-approximate algorithm
could affect the communication rate and hence the accuracy for computing the top-
k value(s) depending on the nature of datasets. Datasets with insignificant margins
between successive rounds are much suited for smaller precision control value or error
bound approximation. And the closer the precision control value or error bound is
to 1, the higher the top-k computation accuracy rate.
Third, although the simple online top-k position is not an exact algorithm, it accu-
rately computed the top-k values in all the experiments. This could be attributed
the nature of dataset. Therefore, it is likely to deviate at some point when presented
with a different dataset other than the ones used in this report.

Figure 5.27: Experiment 3

Figure 5.28: Experiment 4

With reference to Figure 5.30 which is based on the average communication efficiency
of the tested algorithms from all the experiments, we can now make the assertion

64

5. Results

that, in terms of communication efficiency, simple ε-approximate is the most ef-
ficient, followed by adaptive filters-δ precision, online top-k position, basic-exact,
simple naive-polling, basic-exact, simple online top-k position and naive-polling al-
gorithms in that order. With respect to the accuracy in computing valid top-k
value(s), naive, basic and simple online top-k position algorithms are the most effi-
cient.

Figure 5.29: Average Number Of Communication Per Experiment

In an attempt to also determine computation time for each algorithm, we measured
the processing time of each simulation. The results are presented in Table 5.11.

Algorithm Naive-
Polling

Basic-
Exact

Simple
1.5%

Simple
5%-

Adapt
0.05

Adapt
3.0

Online
Top-k

Simple
Online

CPU (ms) 24 141.54 231.09 260.27 586.44 622.51 431.05 176.97
Packet (ms) 21.533 115.07 266.096 236.463 344.223 377.896 240.236 190.741

Table 5.11: K Computation Time Per Round (ms)

From the table, the naive-polling algorithm has the best computation time whilst
Adaptive filters-3.0 precision has the worse. One pattern that can be observed from
this table is that, the algorithms with worse communication performance actually
recorded the least processing time. An average of the processing times recorded
from simulations are presented in Figure 5.30

65

5. Results

Figure 5.30: Average Computation Time Per Round (ms)

66

6
Conclusion

Efficient CDT Algorithms with less communication overhead and computation time
is highly sort after to drive today’s modern technologies that evolve around load bal-
ancing, fleet management, anomaly detection, etc. For this reason, this thesis was
conducted to subject a number of existing CDT algorithms notably naive-polling,
basic-exact, simple ε-approximation, adaptive filters-δ precision, online top-k posi-
tion and our adaptation, simple online top-k position to a comparable analysis. The
basis of our analysis was their respective communication performance, the accuracy
with which they compute top-k value(s) and their processing times. The paragraphs
below elaborates on the findings of our analysis.

All the investigated algorithms emerged as deterministic. Depending on the require-
ments of the application, one can choose between exact or approximation algorithms.
Approximation algorithms were observed to generally generate less communication
compared to the exact algorithms. Therefore, in a system where a margin of error on
the top-k value(s) can be tolerated, one might opt for an approximation algorithm
to save overhead cost. On the other hand, if accuracy in the top-k value(s) is a high
requirement, then one must opt for an exact algorithm that will most likely generate
higher communication volumes than an approximation algorithm.

There is therefore a trade off between communication cost and accuracy in comput-
ing top-k value(s) when selecting an algorithm for a system design or application.
This is a vital choice to make since there is an inverse or negative correlation between
communication efficiency and the top-k accuracy computation rate. This trade off is
further complicated when processing time is to be factored into the analysis. From
our analysis, it was observed that, although the exact algorithms generates rela-
tively higher communication in comparison to the approximation algorithms, they
recorded substantially lower processing or computation times.

Basic-exact algorithm scored high in all the compelling sides of the trade off. It
comes next to simple ε-approximation, online top-k position and adaptive filters-δ
precision in terms of communication efficiency. It is also second after basic-polling
algorithm in terms of processing time. Lastly, it emerged as the best with respect
to accuracy in computing the k value(s), alongside naive-polling and simple online
top-k position algorithms. Therefore in a distributed real-time system that seeks to
save communication overhead and also in which top-k computation accuracy is of a
higher preference, then basic-exact algorithm will be the best fit.

Future works can be directed at incorporating fault tolerance among the coordinator
and the distributed sensors or CPS to enhance availability. It could also further in-

67

6. Conclusion

vestigate the data structures and libraries to find out its impact on the processing or
computation time. Another interesting are to investigate is communication latency
of the various algorithms.

68

Bibliography

[1] Approximate frequency counts over data streams. Proceedings of the 28th Inter-
national Conference on Very Large Data Bases (Hong Kong, China), 364-357.,
2002.

[2] Adaptive filters for continuous queries over distributed data streams. Copyright
2003 ACM 1-58113-634-X/03/06, 2003.

[3] Finding (recently) frequent items in distributed data streams. Proceedings of
the 2 rt InternationalConference on Data Engineering, pages 767–778., 2005.

[4] Online mining (recently) maximal frequent itemsets over data streams. Pro-
ceedings of Research Issues in Data Engineering: Stream Data Mining and
Applications 11-18., 2005.

[5] Continuous monitoring of distributed data streams over a time-based sliding
window. Symposium on Theoretical Aspects of Computer Science, 2010.

[6] Multicriterion decision in management: principles and practice, volume 25.
Springer Science Business Media, 2012.

[7] So who won?: dynamic max discovery with the crowd. In SIGMOD, pages
385–396, 2012.

[8] R. M. Adelsman and A. B. Whinston. Sophisticated voting with information
for two voting functions. Journal of Economic Theory, 15(1):145–159, 1977.

[9] Bharambe A Reiter M. Akella, A and S. Seshan. Detecting ddos attacks on
isp networks. Proceedings of the 2003 PODS Workshop on Management and
Processing of Data Streams., 2003.

[10] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceedings
of the 2003 ACM SIGMOD international conference on Management of data,
pages 28–39, 2003.

[11] Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continu-
ous monitoring of distributed data streams over a time-based sliding window.
Algorithmica, 62(3-4):1088–1111, 2012.

[12] Graham Cormode. The continuous distributed monitoring model. ACM SIG-
MOD Record, 42(1):5–14, 2013.

[13] Graham Cormode, Minos Garofalakis, Shanmugavelayutham Muthukrishnan,
and Rajeev Rastogi. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 25–36, 2005.

[14] Luca De Vito, Vincenzo Cocca, Maria Riccio, and Ioan Tudosa. Wireless active
guardrail system for environmental measurements. In 2012 IEEE Workshop on
Environmental Energy and Structural Monitoring Systems (EESMS), pages 50–
57. IEEE, 2012.

69

Bibliography

[15] Romaric Duvignau, Bastian Havers, Vincenzo Gulisano, and Marina Papatri-
antafilou. Querying large vehicular networks: How to balance on-board work-
load and queries response timeƒ. In 2019 IEEE Intelligent Transportation Sys-
tems Conference (ITSC), pages 2604–2611. IEEE, 2019.

[16] Romaric Duvignau, Marina Papatriantafilou, Konstantinos Peratinos, Eric
Nordström, and Patrik Nyman. Continuous distributed monitoring in the
evolved packet core. In Proceedings of the 13th ACM International Confer-
ence on Distributed and Event-based Systems, pages 187–192, 2019.

[17] B. Eriksson.
[18] Michael Fenlon, Anastasios Makris, and Paul LaFrance. Method and system for

monitoring distributed systems, February 26 2004. US Patent App. 10/647,193.
[19] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based ge-

ometric monitoring of distributed stream queries. Proceedings of the VLDB
Endowment, 6(10):937–948, 2013.

[20] S. Muthukrishnan K. Y. Q. Z. Graham Cormode. Optimal sampling from
distributed streams. PODS ’10 Proceedings of the twenty-ninth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 77–86,
2010.

[21] H. Kim and B. Karp. Autograph: Toward automated distributed worm sig-
nature detection. Proceedings of the 13th USENIX Security Symposium (San
Diego, California), pages 271–286., 2004.

[22] K A. Kumar V. K S D. Kumar, V. and B. Maruti. Pro-
totype design and continuous monitoring for bridge safety by us-
ing iot. https://www.ijert.org/research/prototype-design-and-continuous-
monitoring-for-bridge-safety-by-using-iot-IJERTCONV8IS11020.pdf.

[23] L.K. Lee and Ting H.F. A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows. Proceedings of the 25th Symposium
on Principles of Database Systems (Chicago, Illinois), pages 290–297.

[24] Alexander Mäcker, Manuel Malatyali, and Friedhelm Meyer auf der Heide. On-
line top-k-position monitoring of distributed data streams. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium, pages 357–364. IEEE,
2015.

[25] Bakiras Spiridon Mouratidis Kyriakos and Papadias Dimitris. Continuous mon-
itoring of top-k queries over sliding windows. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2006/01/01.

[26] L. Gravano N. Bruno and A. Marian. Evaluating top-k queries over web-
accessible databases. In Proc.ICDE, 2002.

[27] Chang Y. Smith J. R. LI C. Natsev, A. and J. S. Vitter. Supporting incre-
mental join queries on ranked inputs. In Proceedings of the 27th International
Conference on Very Large Data Bases. 281–290., 2001.

[28] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous
queries over distributed data streams. In Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data, pages 563–574, 2003.

[29] A. Gionis P. I. R. M. Mayur Datar. “maintaining stream statistics over sliding
windows,”. page 1794–1813.

70

h

Bibliography

[30] Konstantinos Peratinos and Sarkhan Ibayev. Epgtop: A tool for continuous
monitoring of a distributed system. Master’s thesis. Chalmers University of
Technology, Gothenburg, Sweden, 2019.

[31] A. Lotem R. Fagin and M. Naor. Optimal aggregation algorithms for middle-
ware. In Proc. PODS, 2001.

[32] Duffield N. Spatscheck 0. van der Merwe J. Sekar, V. and H. Zhang. Lads:
Large-scale automated ddos detection system. Proceedings of USENIX Annual
Technical Conference (Boston, Massachusetts), pages 171–184., 2006.

[33] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to
monitoring threshold functions over distributed data streams. ACM Transac-
tions on Database Systems (TODS), 32(4):23–es, 2007.

[34] R. Stanojevic. Scalable heavy-hitter indentification. Retrieved from:
http://www.hamilton.ie/person/rade/ScalableHH.pdf, 2007.

[35] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina
Papatriantafilou. Geometric monitoring in action: a systems perspective for the
internet of things. In 2018 IEEE 43rd Conference on Local Computer Networks
(LCN), pages 433–436. IEEE, 2018.

[36] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos, Vana
Kalogeraki, and Dimitrios Gunopulos. Online outlier detection in sensor data
using non-parametric models. In Proceedings of the 32nd international confer-
ence on Very large data bases, pages 187–198, 2006.

[37] Mingwang Tang, Feifei Li, and Yufei Tao. Distributed online tracking. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pages 2047–2061, 2015.

[38] G. theobald M., Weikum and R. Schenkel. Top-k query evaluation with proba-
bilistic guarantees. In Proceedings of the 30th International Conference on Very
Large Data Bases. 648–659., 2004.

[39] Nørvag K Vazirgiannis M Vlachou A, Doulkeridis C. On efficient top-k query
processing in highly distributed environments. Proceedings of the ACM SIG-
MOD international conference on management of data, SIGMOD, page pp
753–764, 2008.

[40] Ke Yi and Qin Zhang. Multidimensional online tracking. ACM Transactions
on Algorithms (TALG), 8(2):1–16, 2012.

[41] Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quan-
tiles. Algorithmica, 65(1):206–223, 2013.

[42] Zhenjie Zhang, Reynold Cheng, Dimitris Papadias, and Anthony KH Tung.
Minimizing the communication cost for continuous skyline maintenance. In
Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of data, pages 495–508, 2009.

[43] Li G Zhang X and Feng J. Crowsourced top-k algorithms: An experimental
evaluation. Proceedings of the VLDB Endowment, 2016.

[44] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data
streams in real time. proceedings of the 28th international. Conference on Very
Large Databases (Hong Kong, China), pages 358–369., 2002.

71

Bibliography

72

A
Appendix 1

Source Code:
CLICK HERE to direct you to source of code of the algorithms and datasets

I

https://github.com/Chief-Colin/Continuous-Distributed-Tracking_Algorithms

	List of Figures
	List of Tables
	Introduction
	Context
	System Model
	Goals And Challenges
	Structure Of The Report

	Background
	Problem Description
	Distributed Monitoring Models
	Simple Approaches
	Distributed Monitoring Approaches
	Distributed Data Streams Model
	Distributed Online Tracking Model
	General Heuristics And Other Dedicated Approaches

	Exact and Top-k Tracking
	Approximation Top-k Tracking
	Top-k Tracking Applications
	Literature Review Of Top-k Algorithms

	Algorithms
	Naive-Polling Algorithm
	Basic-Exact Algorithm
	Simple -Approximation Algorithm
	Adaptive Filter- Precision Algorithm
	Online Top-k Position
	Simple Online Top-k Position

	Evaluation Methodology
	Data Set
	Implementation Design Choices
	Evaluation Metrics
	Simulation Setup And Experiments

	Results
	CPU Usage Experiment
	A Tour Of All Tested Algorithms
	Number Of Communication
	Top-k Accuracy Rate / Correctness
	Computation Time

	Packet Processing Rates Experiment
	Comparison Of All Tested Algorithms
	Number Of Communication
	Top-k Accuracy Rate

	Computation Time

	Speed Measurement Experiment
	Analysis Of Results
	Number Of Communication
	Top-k Accuracy Rate

	Temperature Values Experiment
	Number Of Communication
	Top-k Accuracy Rate

	Discussion

	Conclusion
	Bibliography
	Appendix 1

